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Abstract

In this paper, we consider the fundamental problem of recovering a univariate function f
from a finite collection of pointwise samples of its Fourier transform taking nonuniformly. In
the first part of the paper, we show that, under suitable conditions on the sampling frequencies
– specifically, its density and its bandwidth – it is possible to recover f in a stable and accurate
manner in any given finite-dimensional approximation subspace. In practice, this can be carried
out using so-called nonuniform generalized sampling (NUGS). In the second part of the paper
we consider approximation spaces consisting of compactly supported wavelets. We prove that a
linear scaling of the dimension of the space with the sampling bandwidth is both necessary and
sufficient for stable and accurate recovery. Thus wavelets are up to constant factors optimal
spaces for reconstruction.

1 Introduction

The reconstruction of an image or signal from a collection of its Fourier measurements is an im-
portant task in applied mathematics. This problem arises in numerous applications, ranging from
medical imaging (e.g. Magnetic Resonance Imaging (MRI)) to X-ray tomography, seismology and
microscopy (the latter processes usually involve the Radon transform, but equate to reconstruction
from Fourier measurements via the Fourier slice theorem).
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The purpose of this paper is to consider the following fundamental question: given fixed mea-
surements of an unknown image f , i.e. a finite collection of samples of its Fourier transform f̂ ,
under what conditions is possible to recover (an approximation to) f , and how can this be achieved
with a stable numerical algorithm? Our main contributions are: (i) a comprehensive theoretical
framework in the univariate setting which explains when stable reconstruction is possible (ii) a
stable numerical algorithm to achieve such reconstructions and (iii) analysis for the important case
of reconstructions in wavelet bases.

The particular focus of this paper is on the case where the data is acquired nonuniformly in the
Fourier domain. Nonuniform sampling arises naturally in many of the applications listed above.
In particular, radial sampling of the Fourier transform results whenever sampling with the Radon
transform. Furthermore, nonuniform sampling patterns – in particular, spiral trajectories (see
[9, 17] and references therein) – have become increasingly popular amongst MRI practitioners in
the last several decades. Due primarily to the physics of the MR scanner, these sampling geometries
allow for faster, uninterrupted scanning over a larger range of frequencies than traditional Cartesian
scans. This results in higher resolution in Fourier space with similar acquisition times, and in theory,
reconstructions from such sampling geometries correspondingly possess fewer errors in comparison
to Cartesian sampling, due to both the higher resolution obtained and the lower magnetic gradients
required to scan along such trajectories [24, 28, 31].

1.1 Generalized sampling

The approach we take in this paper is based on recent developments in sampling and reconstruction
in abstract Hilbert spaces, known as generalized sampling (GS). This general framework, introduced
in [2] and based on previous work of Unser & Aldroubi [39] and later Eldar et al. [18, 19], addresses
the following problem in sampling theory. Suppose that samples of an element f of a Hilbert space
are given as inner products with respect to a particular basis or frame. Moreover, suppose it is
known that f can be efficiently represented in another basis or frame (e.g. it has sparse or rapidly-
decaying coefficients). GS obtains a reconstruction of f in this new system using only the original
sampling data. In the linear case, this is achieved by least-squares fitting [3], but when sparsity
is assumed, one can combine it with compressed sensing techniques (i.e. convex optimization and
random sampling) to achieve substantial subsampling [1]. By doing so, one obtains a theory and
set of techniques for infinite-dimensional (i.e. analog) compressed sensing, referred to as GS–CS.

GS, or GS–CS, naturally applies to the Fourier reconstruction problem whenever the samples
are taken uniformly. The primary advantage of GS over other standard reconstruction algorithms
for this problem (e.g. gridding or resampling – see below) is that it allows one to take advantage of
the availability of efficient representation systems for images. It is well known that natural images
are well represented in wavelet systems. Images may be sparse in wavelets, or have coefficients with
rapid decay. Moreover, representing medical images in such systems has other benefits over classical
Fourier series representations, such as improved compressibility, better feature detection and easier
and more effective denoising [29, 32, 41]. GS allows one to compute quasi-optimal reconstructions
in wavelets from the given set of Fourier samples, and therefore exploit such beneficial properties.
In the case of uniform Fourier samples, the use of GS with wavelets was extensively studied in [5].
See also [6] for the case of GS–CS with wavelets.

1.2 Contributions of the paper and relation to previous work

The purpose of this paper is to extend the GS framework to the case where Fourier samples are
acquired nonuniformly. We refer to the resulting framework as nonuniform generalized sampling
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(NUGS). Specifically, suppose that Ω = {ω1, . . . , ωN} ⊆ R is a set of N frequencies, and that we
are given the measurements

{f̂(ω) : ω ∈ Ω},

of an unknown signal f ∈ L2(0, 1). Note that for the purposes of this paper, Ω is fixed and cannot
be readily altered (this is typical in the applications listed above). Let T ⊆ L2(0, 1) be a finite-
dimensional space in which we wish to recover f . For example, T could consist of the first M
functions in some orthonormal wavelet basis. Our main contribution is to derive conditions on Ω
and T under which stable reconstruction is possible with NUGS. In particular, we show that if the
samples Ω have density δ < 1 then stable reconstruction is possible provided the bandwidth K of
Ω is sufficiently large, with the precise nature of the scaling depending on the properties of T. We
shall also address the case of the critical density δ = 1 within the setting of Fourier frames.

An important facet of NUGS is that it is always possible to compute the various constants that
enter into our stability and error estimates. Thus, for a given Ω and T, stable reconstruction can
be guaranteed a priori by a straightforward numerical calculation. Our numerical results illustrate
that these bounds give good estimates of the actual reconstruction errors seen in practice.

The first part of this paper, §2–4, is devoted to the general theory of NUGS in the univariate
setting. In the second half, we focus on the important case where the subspace T corresponds to
a wavelet basis. A result proved in [5] shows that when the sampling set Ω consists of the first N
uniform frequencies one can recover the first O (N) coefficients in an arbitrary wavelet basis using
GS. Thus wavelet bases are, up to constants, optimal bases in which to recover images from uniform
Fourier samples. This is not true for example with algebraic polynomial bases, in which case one
can stably recover only at best the first O(

√
N) coefficients [3]. One of the main contributions of

the second half of this paper is to extend this result to the nonuniform case. Specifically, if the
samples Ω have bandwidth K and density δ < 1 then we prove that one can recover the first O (K)
wavelet coefficients using NUGS. Thus, perhaps unsurprisingly, there is a fundamental one-to-one
relationship between the sampling bandwidth and the wavelet scale. This is further highlighted
in §6 where we establish a result that shows that any attempt to reconstruct a fixed number of
wavelet coefficients from a sampling bandwidth K below a critical threshold necessarily results in
exponential ill-conditioning. This generalizes a result proved for GS in [5] to the nonuniform setting
and is related to recent work of Candès & Fernandez–Granda on super-resolution [13].

Let us now make several further remarks. For the remainder of this paper we shall focus on
the case of one-dimensional functions f having compact support in [0, 1]. It is, however, possible
to extend our results to the higher-dimensional setting, and this is currently work in progress.
Another issue we shall not address in this paper is that of sparsity. Sparsity-exploiting algorithms
are currently revolutionising signal and image reconstruction. Since a main focus of this paper is
wavelets, in which images are known to be sparse, it may at first sight appear strange not to seek to
exploit such properties. For uniform samples this has indeed been done by using the aforementioned
GS–CS framework, and the results are reported in [1, 6]. However, as was explained in [1] (see
also [7]), before one can exploit sparsity it is first necessary to understand the fundamental linear
mapping between the samples and coefficients in the reconstruction system. This is precisely what
we do in this paper via NUGS. Exploiting sparsity by extending the work of [6] to the case of fully
nonuniform Fourier samples is a topic of ongoing investigations.

An important facet of this work is that we assume an analog model for the unknown image or
signal f . Unlike other common approaches in nonuniform sampling, such as gridding [26, 36, 40],
resampling [35, 34] or iterative reconstructions [38], f is not modelled as a finite-length Fourier
series, or as a finite array of pixels, but rather as a function in L2(0, 1). Consequently, a key issue
in NUGS is that of approximation. By using an appropriate approximation basis for the function,
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we successfully avoid the unpleasant artefacts (e.g. Gibbs ringing) associated with gridding and
resampling algorithms. Note that the popular iterative reconstruction algorithm of Sutton, Noll
and Fessler [38] is a special case of our framework NUGS corresponding to a pixel basis for T. Thus
our work provides as a corollary important theoretical guarantees for the stability and error of this
algorithm that, to the best of our knowledge, are currently unknown.

In addition, we note that, unlike in the standard compressed sensing approach to MRI, we model
the measurements as continuous Fourier samples rather than discrete Fourier samples. As explained
in [1, 7, 25], modelling the measurements as discrete Fourier samples leads to basis mismatch and
an inverse crime, and consequently results in inferior reconstructions. Note that our analog model
is the same as that used with great success in recent work of Guerquin-Kern, Haberlin, Pruessmann
& Unser [24] on iterative, wavelet-based reconstruction algorithms for MRI. The results we prove
in this paper mark the first step towards theoretical reconstruction guarantees for these algorithms.

Finally, we remark that it is common in nonuniform sampling theory to assume that the sam-
pling frequencies give rise to a Fourier frame [10, 11, 12, 20]. Reconstruction can then be carried
out by iterative inversion of the frame operator, for example (this reconstruction is quite different
from ours, though, since the approximation properties are tied to those of the sampling frame).
However, the frame assumption can be problematic for several reasons. First, Fourier frames do not
allow arbitrary clustering of sampling frequencies, such as often the case in practice. Second, even
if a sequence of samples gives rise to a frame, it can be difficult to determine the frame constants
so as to get explicit bounds. Moreover, in our setting, where we consider finite sets of samples,
and reconstructions in finite-dimensional spaces, the existence of a countable frame sequence is in
some senses superfluous. Instead, we shall mainly focus on simple conditions for stable recovery –
namely, the density δ and the bandwidth K – both of which can be easily computed, and impor-
tantly, generalize to higher dimensions (this will be reported in a subsequent work). Clustering of
the samples will be accounted for by appropriate weighting, which is similar to the approach taken
in [21, 22, 33]. One may consider this as a weighted Fourier frame approach, although we do not
necessarily assume an infinite number of samples. Having said this, however, we will also provide
theorems for NUGS for the case of sampling with Fourier frames. These results are important,
since they allow one to analyse the reconstruction when sampling at the critical density δ = 1.

2 The reconstruction problem

Let us first introduce some notation. Throughout the paper, 〈·, ·〉 will denote the inner product on
L2(R) and ‖·‖ the corresponding norm. We denote the Fourier transform by

f̂(ω) =

∫
R
f(x)e−2πiωx dx, ω ∈ R, f ∈ L2(R).

Our primary consideration in this paper will be functions with compact support, which we normalize
to [0, 1]. Thus, we define the subspace

H =
{
f ∈ L2(R) : supp(f) ⊆ [0, 1]

}
⊆ L2(R).

We shall use the notation
Ω = {ω1, . . . , ωN} ⊆ R,

to denote a finite set of distinct frequencies. For convenience we assume that these points are
ordered with ω1 < . . . < ωN . We shall refer to such a set Ω as a sampling scheme. We also define
T to be a finite-dimensional subspace of H; the so-called reconstruction space. The corresponding
orthogonal projection onto T is denoted by PT.
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Given such a sampling scheme Ω and reconstruction space T ⊆ H, the reconstruction problem
we address in this paper is that of computing an approximation f̃ ∈ T to f in the subspace T using
only the sampling data

{f̂(ω) : ω ∈ Ω}. (2.1)

When developing a method for this problem, i.e. a mapping F from f to f̃ depending solely on the
data (2.1), there are two critical considerations (see [4] for further discussion):

(i) The mapping F should be quasi-optimal. That is, for some constant µ = µ(F ) � ∞ inde-
pendent of f , we have

‖f − F (f)‖ ≤ µ‖f − PTf‖, ∀f ∈ H.

(ii) The mapping F should be numerically stable, i.e. or some constant κ = κ(F )�∞,

‖F (g)‖ ≤ κ‖g‖, ∀g ∈ H.

Note that a quasi-optimal mapping F is automatically numerically stable with constant κ ≤ 1 +µ.
We include both mainly for emphasis, and also because later we will derive exact expressions for
both κ and µ in the case of NUGS. Note also that any quasi-optimal mapping F satisfies

‖f − F (f + g)‖ ≤ C (‖f − PTf‖+ ‖g‖) , ∀f, g ∈ H,

where C ≤ 1 + µ in general and C = max{κ, µ} in the case of linear F (such as NUGS).
Recall that the motivation for considering a particular reconstruction space T, e.g. the span of

the first M wavelets, is that f is known to be well-represented in this space. In other words, the
error ‖f−PTf‖ is small. Quasi-optimality guarantees that the reconstruction f̃ from the data (2.1)
inherits such a small error. Stability, on the other hand, is also vital to ensure that perturbations
of the measurements do not adversely affect the reconstruction.

With this, we can now formalize the main problem we address in this paper:

Problem 2.1 (The reconstruction problem). Given a sampling scheme Ω and a reconstruction
space T, determine:

(i) under what conditions stable, quasi-optimal reconstruction is possible,
(ii) the magnitude of the corresponding reconstruction constant C = C(Ω,T).

We shall solve this problem by analysing a particular method, the NUGS reconstruction, which
we introduce in §3. This provides a sufficient condition for (i) and an upper bound for (ii). As
we explain in Remark 6.4, however, under appropriate conditions the NUGS reconstruction cannot
be outperformed by any other method. In other words, the NUGS reconstruction constant is
a fundamental constant of the mapping between samples (2.1) and the subspace T. Hence our
analysis of NUGS provides not only sufficient conditions for stable, quasi-optimal reconstruction,
but also (under appropriate, but mild, assumptions) necessary conditions.

3 Nonuniform generalized sampling

3.1 The case of uniform samples

Problem 2.1 was originally considered in [2, 3] for the case of uniform samples. If N is odd this
corresponds to setting

Ω = {εn : n ∈ Z ∩ [−(N − 1)/2, (N − 1)/2]} , (3.1)
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where ε ≤ 1 is the sampling period (ε = 1 corresponds to the Nyquist rate). The reconstruction f̃
is then defined by a least-squares fit of the data:

f̃ = argmin
g∈T

(N−1)/2∑
n=−(N−1)/2

∣∣∣f̂(εn)− ĝ(εn)
∣∣∣2 . (3.2)

As was shown in [2], whenever N is sufficiently large (with the precise value depending on T), then
the mapping F : f 7→ f̃ given by (3.2) is stable and quasi-optimal.

Before extending GS to the case of nonuniform samples, let us first explain why letting N →∞
leads to a bounded reconstruction constant. First, we note that if

Sf(x) =
1

ε

(N−1)/2∑
n=−(N−1)/2

f̂(εn)e2πiεnxI[0,1](x), (3.3)

denotes the partial Fourier series of a function f , then one can show the following: (3.2) is equivalent
to the variational problem

find f̃ ∈ T such that 〈S f̃ , g〉 = 〈Sf, g〉, ∀g ∈ T.

The operator S, the partial Fourier operator, converges strongly to the identity operator on H as
N → ∞. Thus, for large N , 〈S·, ·〉 defines an equivalent inner product over the finite-dimensional
subspace T. Stability and quasi-optimality can now be deduced using similar arguments to those
that we present in the case of NUGS in §3.3. Note that the reconstruction constant C(Ω,T) for
(3.1) is given by

C(Ω,T) =

 inf
g∈T
‖g‖=1

〈Sg, g〉

−1/2

.

In particular, C(Ω,T)→ 1 as N →∞ for fixed, finite-dimensional T.

Remark 3.1 In typical applications, T = span{φn}Mn=1 is the space spanned by the first M ele-
ments of a Riesz basis or frame {φn}n∈N for H. Since the number of samples N is usually fixed in
applications, it may be more natural to think of decreasing M rather than increasing N . Mathe-
matically, both are equivalent. Whilst noting this, we shall continue to consider increasing N (or
later, the bandwidth K), due to its connection with strong convergence.

3.2 Extension to nonuniform samples

Suppose that Ω = {ω1, . . . , ωN} ⊆ R is a sampling scheme based on ordered nonuniform samples
ω1 < . . . < ωN . We now wish to extend the GS framework to this setting, leading to so-called
nonuniform generalized sampling (NUGS). Our first step is to replace strong convergence of the
partial Fourier series (3.3) by a weaker condition:

Definition 3.2. Let Ω be a sampling scheme, S : H→ H a bounded linear operator and let T be a
finite-dimensional subspace of H. Suppose that S satisfies

(i) for each f ∈ H, Sf depends only on the sampling data {f̂(ω) : ω ∈ Ω},

(ii) S is self-adjoint with respect to 〈·, ·〉 and satisfies

|〈Sf, g〉| ≤
√
〈Sf, f〉〈Sg, g〉, ∀f, g ∈ H, (3.4)
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(iii) there exists a positive constant C1 = C1(Ω,T) such that

〈Sf, f〉 ≥ C1‖f‖2, ∀f ∈ T, (3.5)

Then S is said to be an admissible sampling operator for the pair (Ω,T).

For convenience, throughout the remainder of the paper we shall assume that C1 is the largest
constant for which (3.5) holds. Given such an operator S, we now also define the constants C2 =
C2(Ω) and C3 = C3(Ω,T) by

〈Sf, f〉 ≤ C2‖f‖2, ∀f ∈ H. (3.6)

and
〈Sf, f〉 ≤ C3‖f‖2, ∀f ∈ T, (3.7)

Likewise, we assume these constants are the smallest possible. Note that C2 and C3 exist since S
is bounded, and we also trivially have that C3 ≤ C2. We remark in passing that we usually want
C2 to be independent of the number of samples N (or more precisely, the bandwidth K of Ω – see
Definition 4.1), since, as we see later, it will appear in the error and stability estimates.

The inequalities (3.5) and (3.7) relax the condition of strong convergence of the operator S.
Specifically, they ensure that the bilinear form 〈S·, ·〉 gives rise to an equivalent inner product on
T. We remark in passing that in the case of uniform sampling, the operator S defined by (3.3)
is automatically an admissible sampling operator whenever N is sufficiently large, with constants
C1 ≈ 1 for large N and C2 = 1 for all N .

In the nonuniform setting, there are many potential ways in which one could construct the
operator S. In this paper, we shall focus primarily on the following simple construction:

Sf(x) =
N∑
n=1

µnf̂(ωn)e2πinx, x ∈ [0, 1], (3.8)

where µn > 0 are particular weights. Observe that S, when defined in this way, automatically
satisfies properties (i) and (ii) for an admissible sampling operator. Clearly, in the case uniform
sampling, (3.8) reduces to (3.3) when the weights µn = 1/ε.

Given a sampling scheme Ω, a finite-dimensional subspace T and an admissible sampling oper-
ator S we now define the NUGS reconstruction by

f̃ ∈ T, 〈S f̃ , g〉 = 〈Sf, g〉, ∀g ∈ T, (3.9)

and write F = FΩ,T for the mapping f 7→ f̃ . As in the uniform case, if S is given by (3.8), then
this is equivalent to the weighted least-squares data fit:

f̃ = argmin
g∈T

N∑
n=1

µn

∣∣∣f̂(ωn)− ĝ(ωn)
∣∣∣2 . (3.10)

As we shall see next, the constants C1, C2 and C3 arising from an admissible sampling oper-
ator S determine the stability and quasi-optimality of the resulting NUGS reconstruction via the
reconstruction constant C(Ω,T). We now formally define this constant:

Definition 3.3. Let S be an admissible sampling operator with constants C1 and C2 given by (3.5)
and (3.6) respectively. The ratio C(Ω,T) =

√
C2/C1 is referred to as the NUGS reconstruction

constant.
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3.3 Analysis

We now show existence, uniqueness, stability and quasi-optimality of NUGS:

Theorem 3.4. Let Ω be a sampling scheme and T a finite-dimensional subspace, and suppose that
S is an admissible sampling operator. Then the reconstruction F (f) = f̃ defined by (3.9) exists
uniquely for any f ∈ H and we have the sharp bound

‖f − F (f + h)‖ ≤ C̃ (‖f − PTf‖+ ‖h‖) , ∀f, h ∈ H, (3.11)

where the constant C̃ is given by

C̃ = C̃(Ω,T) = sup
g∈T
g 6=0

{
‖g‖

‖PS(T)g‖

}
.

Moreover, the constant C̃ satisfies C̃ ≤ C, where C = C(Ω,T) is the corresponding reconstruction
constant (Definition 3.3).

Note that this theorem extends a previous result [4] to the case of nonuniform samples.

Proof. We first show that C̃ ≤ C, and in particular, that C̃ <∞. By definition

1/C̃ = inf
g∈T
g 6=0

‖PS(T)g‖
‖g‖

= inf
g∈T
g 6=0

sup
g′∈T
Sg′ 6=0

|〈g,Sg′〉|
‖g‖‖Sg′‖

.

Let g ∈ T\{0}. If Sg = 0, then 〈Sg, g〉 = 0 which contradicts the admissibility of S. Hence Sg 6= 0.
Therefore, we may set g′ = g above to get

1/C̃ ≥ inf
g∈T
g 6=0

〈Sg, g〉
‖g‖‖Sg‖

.

Observe that
‖Sg‖ = sup

h∈H
‖h‖=1

〈Sg, h〉 ≤
√
C2

√
〈Sg, g〉,

where the inequality follows from (3.4) and (3.6). This now gives

1/C̃ ≥ 1√
C2

inf
g∈T
g 6=0

√
〈Sg, g〉
‖g‖

,

which, upon application of (3.5), yields C̃ ≤
√
C2/C1 = C as required.

To prove the remainder of the theorem, we shall used the techniques of [4] based on the geometric
notions of subspace angles and oblique projections. Let U = T and V = (S(T))⊥. Note that
1/C̃ = cos(θUV⊥) is cosine of the subspace angle between U and V⊥ defined by

cos(θUV⊥) = inf
u∈U
‖u‖=1

‖PV ⊥u‖.

Since C̃ <∞, the subspaces U and V satisfy the so-called subspace condition cos(θUV⊥) > 0. Thus
[4, Cor. 3.5] gives

‖WUVf‖ ≤ C̃‖f‖, ∀f ∈ H0,
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and
‖f −WUVf‖ ≤ C̃‖f − PUf‖, ∀f ∈ H0,

where H0 = U⊕V and WUV : H0 → U is the projection with range U and kernel V.
Hence, to establish (3.11) it remains to show the following: (i) H0 = H and (ii) f̃ = WUVf ,

∀f ∈ H. For (i), we note that H0 = H provided dim(S(T)) = dim(T) [4, Lem. 3.10]. However, if
not then there exists a nonzero g ∈ T such that S(g) = 0. As previously observed, this implies that
g = 0; a contradiction.

For (ii), we first note that

〈WUVf,Sg〉 = 〈f,Sg〉, ∀g ∈ T.

Since S is self-adjoint, it follows that WUVf satisfies the same conditions (3.9) as f̃ . Thus, it
remains only to show that f̃ is unique. However, if not then we find that there is a nonzero
g ∈ T∩S(T)⊥ = U∩V. But then cos(θUV⊥) = 0, and this contradicts the fact that U and V obey
the subspace condition.

Theorem 3.4 confirms that admissibility of S is sufficient for quasi-optimality and stability of
the reconstruction f̃ up to the magnitude of the reconstruction constant C. Note that the result
is true under the slightly weaker assumption C̃ < ∞ (which is of course implied by C1 > 0 and
C2 < ∞). However, the constant C̃ is rather difficult to work with in practice. First, it is hard
to estimate C̃ for typical reconstruction spaces. Second, it does not give a useful bound for the
condition number of the matrix of the linear system (3.9) which, as we discuss next, is important
from a computational perspective.

Remark 3.5 Although we shall assume throughout the remainder of the paper that S takes the
form (3.8), the results of this section do not require this. They only assume that S is admissible in
the sense of Definition 3.2, and we note here that the first condition (i), i.e. that the samples are one-
dimensional Fourier samples in the Hilbert space H = L2(0, 1), is merely for convenience. Crucially
for future work, this means that the results in this section easily generalise to multidimensional
Fourier measurements, as well as to other sampling problems. Moreover, even in one dimension it
allows for the possibility of more general (e.g. nondiagonal) forms S than (3.8).

3.4 Computation of the reconstruction and the reconstruction constant

We now discuss implementation of NUGS. Recall that if S is given by (3.8), then (3.9) is equivalent
to (3.10). In particular, if {φm}Pm=1 is a basis for T, and if the reconstruction f̃ is given by

f̃ =

P∑
m=1

amφm,

then the vector of coefficients a = (a1, . . . , aP )> is the least squares solution of the N × P linear
system

Aa ≈ b, (3.12)

where b = (b1, . . . , bN )> and A ∈ CN×P have entries

bn =
√
µnf̂(ωn), An,m =

√
µnφ̂m(ωn), n = 1, . . . , N, m = 1, . . . , P. (3.13)

Thus, once a basis for T is specified, f̃ can be computed by solving the least squares problem (3.12).
The computational cost in doing so is proportional to the condition number of A, which determines
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the number of iterations required in an iterative solver such as conjugate gradients, multiplied by
the cost of performing matrix-vector operations with A and its adjoint A∗. For the former, we have
the following:

Theorem 3.6. Let {gm}Pm=1 be a basis for T and suppose that A is defined by (3.13). Then the
constants C3(Ω,T) and C1(Ω,T) are the maximal and minimal eigenvalues of the matrix pencil
{A∗A,B}, where B ∈ CP×P is the Gram matrix for {φm}Pm=1. In particular, the condition number
of A satisfies

Cw(Ω,T)/
√
κ(B) ≤ κ(A) ≤

√
κ(B)Cw(Ω,T),

where Cw(Ω,T) =
√
C3(Ω,T)/C1(Ω,T). Moreover, if {gm}Pm=1 is an orthonormal basis then

C3(Ω,T) = σ2
max(A), C1(Ω,T) = σ2

min(A),

and κ(A) = Cw(Ω,T).

Proof. The proof is similar to that given in [4] and hence is omitted.

This theorem asserts that, provided a Riesz or orthonormal basis is chosen for T (so that κ(B)
is small), the condition number of A is small precisely when Cw(Ω,T) is also small. In this case,
the reconstruction f̃ can be computed using a correspondingly small number of iterations.

Note that this theorem also asserts that Cw(Ω,T) can be computed. Unfortunately, Cw(Ω,T)
provides only a lower bound for the reconstruction constant C(Ω,T), and thus computing Cw(Ω,T)
does not give rise to an estimate for the constant in the error bound (3.11). Nevertheless, the fact
that Cw(Ω,T) is computable means that C(Ω,T) can in fact be numerically approximated via the
following limiting process:

Lemma 3.7. Suppose that Ω is finite and let S : H→ H be a linear operator satisfying conditions (i)
and (ii) of Definition 3.2. Let TN , N ∈ N, be a sequence of finite-dimensional reconstruction spaces
such that the corresponding orthogonal projections PN = PTN

converge strongly to the identity on
H. Then

C2(Ω) = lim
N→∞

C3(Ω,TN ).

In particular, C2(Ω) can be approximated to arbitrary accuracy by taking N sufficiently large.

Proof. Note first that C3(Ω,TN ) ≤ C2(Ω). Let f ∈ H, ‖f‖ = 1. Then

〈Sf, f〉 = 〈SPNf,PNf〉+ 〈S(f − PNf),PNf〉+ 〈Sf, f − PNf〉

≤ C3(Ω,TN ) + 2
√
C2(Ω)

√
〈S(f − PNf), f − PNf〉.

Thus,

C3(Ω,TN ) ≤ C2(Ω) ≤ C3(Ω,TN ) + 2
√
C2(Ω) sup

f∈H
‖f‖=1

√
〈S(f − PNf), f − PNf〉.

It suffices to prove that the final term tends to zero as N →∞.
The operator S is linear and, for any g, Sg depends only on the finite set of values ĝ(ω), ω ∈ Ω.

Therefore, S is bounded and has finite rank. The result now follows immediately from this and the
strong convergence PN → I.
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Since C2(Ω) can always be approximated for finite Ω, one can always numerically estimate
the reconstruction constant C(Ω,T) and therefore guarantee stability and quasi-optimality of the
reconstruction a priori. Note that different choices of the sequence TN , N ∈ N, in the limiting
process may give faster convergence to this limit. We shall not discuss this issue. We also note that
this limiting process may be avoided altogether in the case where S is given by (3.8) with appropriate
weights, and where the samples satisfy an appropriate density condition (see Definition 4.1 below)
or arise from a Fourier frame. This is discussed in §4.3.

Remark 3.8 As mentioned, efficient computation of f̃ relies on a fast algorithm for performing
matrix-vector computations with A and A∗. The existence of such algorithms depends critically on
the choice of the reconstruction space T. Fortunately, in the important case of wavelets, fast algo-
rithms can be incorporated. These are based on Nonuniform Fast Fourier Transforms (NUFFTs)
and fast wavelet transforms. Since the focus of this paper is primarily on theory, however, we shall
not discuss this in further detail. A future work describing the multidimensional case will address
this topic.

4 A generalized sampling theorem for nonuniform samples

Having introduced NUGS, we now establish one of the main results of the paper. Namely, we prove
a generalized sampling theorem which asserts that stable, quasi-optimal reconstruction is possible
for any fixed T under appropriate conditions on the nonuniform sampling scheme Ω.

We shall consider two sampling scenarios. First, sampling schemes Ω subject to appropriate
density and bandwidth conditions. Second, sampling schemes arising from Fourier frames. These
scenarios are the topics of the next two subsections.

4.1 (K, δ)-dense sampling schemes

Definition 4.1. Let K > 0 and 0 < δ < 1 and ω1 < ω2 < . . . < ωN . The sampling scheme
Ω = {ωn : n = 1, . . . , N} has bandwidth K and density δ if Ω ⊆ [−K,K] and

max
n=0,...,N

{ωn+1 − ωn} ≤ δ,

where ω0 = ωN − 2K and ωN+1 = ω1 + 2K. In this case, we say that Ω is (K, δ)-dense.

Our main result in this section is to show that, for an arbitrary fixed reconstruction space T,
(K, δ)-density for suitably large K and small δ ensures stable reconstruction. This holds provided
the weights µn in (3.8) are chosen according to the following strategy:

µn =
1

2
(ωn+1 − ωn−1) , n = 1, . . . , N, (4.1)

where, as above, we set ω0 = ωN − 2K and ωN+1 = ω1 + 2K (other choices of weights are possible,
but we shall not address this issue). Note that our (K, δ)-density condition is similar to the condition
used by Feichtinger, Gröchenig & Strohmer in nonuniform sampling [21], as well as that found in
Potts & Tasche on the numerical stability on NUFFTs [33].

We commence with the following lemma:

Lemma 4.2. Let Ω = {ω1, . . . , ωN} be (K, δ)-dense and suppose that µ1, . . . , µN are given by (4.1).
Then for any nonzero f ∈ L2(0, 1) we have(√

1− ‖f̂‖2R\I/‖f‖2 − δ
)2

‖f‖2 ≤
N∑
n=1

µn|f̂(ωn)|2 ≤ (1 + δ)2‖f‖2,

11



where I = (−K + 1
2δ,K −

1
2δ), and ‖f̂‖2R\I =

∫
R\I |f̂(ω)|2 dω.

Note that this lemma is an extension of a result of Gröchenig [22] to the case where the number
of samples N is finite. Gröchenig’s result is obtained in the limit N,K →∞. We remark also that
the lower bound is strictly less than (1− δ)2 for any nonzero f . This follows from the observation
that since f is supported in [0, 1], f̂ cannot have compact support. However, the lower bound
converges to (1 − δ)2 as the bandwidth K is increased. In other words, N Fourier samples with
density δ < 1 and appropriately large bandwidth K are sufficient to control ‖f‖. As we shall see
below, this observation leads to the main result in this section.

Proof of Lemma 4.2. First, let us define a function F ∈ L2
(
−1

2 ,
1
2

)
such that F (x) = f(x + 1/2).

Since |F̂ (ω)| = |f̂(ω)|, and also ‖F‖ = ‖f‖, it is enough to prove the theorem for the function F .
We now proceed similarly to as in [22]. Let zn = 1

2(ωn−1 + ωn) and write

χ(ω) =
N∑
n=1

F̂ (ωn)I[zn,zn+1)(ω),

so that

S2 =

N∑
n=1

µn|F̂ (ωn)|2 =

∫ zN+1

z1

|χ(x)|2 dx = ‖χ‖2J ,

where J = (z1, zN+1) and ‖·‖J denotes the L2-norm over J . Hence

‖F̂‖J − ‖F̂ − χ‖J ≤ S ≤ ‖F̂‖R + ‖F̂ − χ‖J . (4.2)

Using Wirtinger’s inequality [22, Lem. 1], we find that

‖F̂ − χ‖2J =
N∑
n=1

∫ zn+1

zn

∣∣∣F̂ (ω)− F̂ (ωn)
∣∣∣2 dω

=
N∑
n=1

(∫ ωn

zn

+

∫ zn+1

ωn

) ∣∣∣F̂ (ω)− F̂ (ωn)
∣∣∣2 dω

≤
N∑
n=1

(
4(ωn − zn)2

π2

∫ ωn

zn

+
4(zn+1 − ωn)2

π2

∫ zn+1

ωn

) ∣∣∣∣ d

dω
F̂ (ω)

∣∣∣∣2 dω

≤ δ2

π2

∫
J

∣∣∣∣ d

dω
F̂ (ω)

∣∣∣∣2 dω,

where the final inequality follows from the (K, δ)-density of the samples. Since differentiation in
Fourier space corresponds to multiplication by (−2πix) in physical space, we conclude that

‖F̂ − χ‖J ≤ 2δ
∥∥∥F̂1

∥∥∥
J
≤ 2δ

∥∥∥F̂1

∥∥∥
R
, F1(x) = xF (x).

The Fourier transform satisfies ‖ĝ‖R = ‖g‖R, ∀g ∈ L2(R). Since F is supported in [−1/2, 1/2], we
deduce that

‖F̂ − χ‖J ≤ 2δ‖F1‖ ≤ δ‖F‖. (4.3)

Substituting this into the right-hand side of (4.2), we get S ≤ (1 + δ)‖F‖, which gives the upper
bound. For the lower bound, we first note that I ⊆ J . Hence, using (4.2) and (4.3) we get

S ≥ ‖F̂‖I − δ‖F‖ ≥
√
‖F̂‖2 − ‖F̂‖2R\I − δ‖F‖,

and the lower bound follows.
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Definition 4.3. Let T ⊆ H. The z-residual of T is the quantity

E(T, z) = sup
{
‖f̂‖R\(−z,z) : f ∈ T, ‖f‖ = 1

}
, z ∈ [0,∞). (4.4)

Note that E(T, z) ≤ 1, ∀z and any T, since ‖f̂‖ = ‖f‖.

Lemma 4.4. Let T ⊆ H be finite-dimensional. Then E(T, z)→ 0 monotonically as z →∞.

Proof. Clearly E(T, z) is monotonically decreasing in z. Moreover, for any fixed f ∈ T, we have
‖f̂‖R\(−z,z) → 0 as z →∞. The result now follows immediately since T is finite-dimensional.

The relevance of the z-residual is that it gives an upper bound for the reconstruction constants
C(Ω,T) for an arbitrary subspace T. Combining the previous two lemmas, we immediately obtain
our main result of this section:

Theorem 4.5. Let T ⊆ H be finite-dimensional and let Ω be (K, δ)-dense, where

δ <
√

1− E(T,K − 1
2)2.

Let S be given by (3.8) with weights (4.1). Then S is admissible with reconstruction constant
C(Ω,T) (see Definition 3.3) satisfying

C(Ω,T) ≤ 1 + δ√
1− E(T,K − 1

2)2 − δ
. (4.5)

Proof. The upper bound in Lemma 4.2 immediately gives C2(Ω) ≤ (1 + δ)2. For C1(Ω,T) we set
f = g ∈ T in Lemma 4.2, and then apply the definition of E(T, z) to get

C1(Ω,T) ≥
(√

1− E(T,K − 1
2δ)

2 − δ
)2

.

The result now follows from monotonicity of E(T, z) and the definition of C(Ω,T).

The main consequence of this theorem is as follows. For a fixed reconstruction space T, the
reconstruction constant C(Ω,T) can be made arbitrarily close to 1+δ

1−δ by taking K sufficiently large.
Thus, even with highly nonuniform samples, we are guaranteed a stable reconstruction for large
enough bandwidth K provided the density condition δ < 1 holds, with the precise level of stability
controlled primarily by how close δ is to one.

Another important aspect of the Theorem 4.5 is the nature of the bound (4.5). The right-hand
side separates geometric properties of the sampling scheme Ω, i.e. the density δ, from intrinsic
properties of the reconstruction space T, i.e. the z-residual E(T, z). Hence, by analysing the z-
residual for each particular choice of T, we can guarantee stable, quasi-optimal reconstruction for
all sampling schemes Ω with δ < 1 and appropriate bandwidth K. This is how we shall proceed in
§5 when we consider wavelet reconstruction spaces.
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4.2 Sampling at the critical density: the frame case

As commented previously, it is commonplace in nonuniform sampling to assume that the sampling
points ω−N , ω1−N , . . . , ωN , which we now index from −N to N , arise from an infinite sequence
{ωn}n∈Z which gives rise to a Fourier frame {e2πiωn·I[0,1](·)}n∈Z for H. The theory presented in
the previous section, which establishes stable reconstruction for arbitrary (K, δ)-dense sampling
schemes Ω, does not require this. As discussed in §1, this approach has a number of advantages
over the frame approach.

Unfortunately, all the bounds for C(Ω,T) found in the previous section decline as δ → 1−,
and are infinitely large at the critical value δ = 1. This result is sharp in the sense that there are
countable nonuniform sampling schemes Ω = {ωn}n∈Z with density δ = 1 which are not complete
(for an example, see [14] or [42]), and for which one therefore cannot expect stable or quasi-optimal
reconstructions. However, it is clear from considering uniform samples Ω = {n}n∈Z that density
δ = 1 is permissible in some cases. The standard approach to handle this “critical” density is
to assume that the samples Ω = {ωn}n∈Z give rise to a Fourier frame. As we show next, stable
reconstruction is also possible in this setting within the NUGS framework.

4.2.1 Background and notation

Let {ωn}n∈Z give rise to a Fourier frame for H. In other words, there exist constants 0 < A ≤ B <∞
(the frame constants) such that

A‖f‖2 ≤
∑
n∈Z
|f̂(ωn)|2 ≤ B‖f‖2, ∀f ∈ H.

Note that the operator

S : H→ H, f 7→
∑
n∈Z

f̂(ωn)e2πiωn·I[0,1](·), (4.6)

the so-called frame operator, is well-defined, linear, bounded and invertible, and satisfies

A‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2, ∀f ∈ H.

Moreover, the truncated operators SN : f 7→
∑N

n=−N f̂(ωn)e2πiωn·I[0,1](·) converge strongly to S on
H as N →∞.

It shall be important later to have conditions under which a sequence {ωn}n∈Z gives rise to a
Fourier frame. Fortunately, in the one-dimensional setting of this paper, a near-characterization is
known. To state this, we first require several definitions:

(i) A sequence of points λk ∈ R, k ∈ I, is called separated if

|λk − λj | ≥ η, j 6= k.

for some η > 0. If {λk}k∈I is a finite union of separated sets, i.e.

{λk}k∈I =

K⋃
n=1

{λk}k∈In ,

where each {λk}k∈In is separated, then we call {λk}k∈I relatively separated.
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(ii) For a sequence {ωn}n∈Z, the lower Beurling density is defined by

D− = lim
r→∞

n−(r)

r
, n−(r) = min

t∈R
|{n ∈ Z : ωn ∈ (t, t+ r)}| .

The following theorem, due to Jaffard [27] and Seip [37], gives an almost characterization of Fourier
frames in terms of relative separation and the Beurling density:

Theorem 4.6. If {ωn}n∈N is relatively separated and D− > 1 then {e2πiωn·I[0,1](·)}n∈Z forms a
frame for H. Conversely, If {e2πiωn·I[0,1](·)}n∈Z forms a frame for H then D− ≥ 1 and {ωn}n∈Z is
relatively separated.

Note that there exist both relatively separated sequences with D− = 1 which form frames and
relatively separated sequences with D− = 1 which do not. See [14] for details.

4.2.2 Stable reconstructions from frame samples

Let Ω = ΩN = {ωn : |n| ≤ N} be the first 2N + 1 entries of a sequence {ωn : n ∈ Z} that forms a
Fourier frame. According to the results of §3.2 and §3.3, stable reconstruction is possible provided
an admissible sampling operator exists. Fortunately, this is always the case:

Theorem 4.7. Let T be a finite-dimensional subspace of H, and suppose that ΩN = {ωn : |n| ≤ N},
where {ωn : n ∈ Z} gives rise to a Fourier frame. Then the partial frame operator

SN : f 7→
N∑

n=−N
f̂(ωn)e2πiωn·, (4.7)

is admissible for all sufficiently large N . Specifically,

C(Ω,T) ≤
√
B√

A− Ẽ(T, N)2

, (4.8)

where A and B are the frame constants and

Ẽ(T, N)2 = sup

 ∑
|n|>N

|f̂(ωn)|2 : f ∈ T, ‖f‖ = 1

 . (4.9)

Proof. The operator SN trivially satisfies conditions (i) and (ii) of Definition 3.2. For the upper
bound (3.6) we merely note that 〈SNf, f〉 ≤ 〈Sf, f〉 ≤ B‖f‖2, where S is the frame operator (4.6).
Moreover, since SN → S strongly and T is finite-dimensional, (3.5) holds (with appropriate C1) for
all large N . Specifically, for f ∈ T we have

〈SNf, f〉 = 〈Sf, f〉 − 〈(S − SN )f, f〉 ≥ A‖f‖2 −
∑
|n|>N

|f̂(ωn)|2 ≥
(
A− Ẽ(T, N)2

)
‖f‖2,

which gives C1(Ω,T) ≥ (A− Ẽ(T, N)). The bound (4.8) now follows from the definition of C.

Note that GS was extended to frame samples in [4]. When the sampling operator is given by
(4.7), NUGS reduces to GS. This section on frame samples is included primarily for completeness.
The novel results in the paper concerning frames come in the next two sections when we obtain
estimates for the reconstruction constant C(Ω,T).
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4.3 Summary and estimation of constants

Let us now sum up. For reconstructions from nonuniform Fourier samples, we can distinguish two
cases. When the samples Ω = {ωn : n = 1, . . . , N} are (K, δ)-dense, the results of §4.1 establish
stable reconstruction with simple, numerically-verifiable, bounds for C(Ω,T). Specifically, we may
compute C1(Ω,T) via Theorem 3.6, and use the bound C2(Ω) ≤ (1 + δ)2 obtained in Theorem 4.5
to give the computable estimate

C(Ω,T) ≤ CB(Ω,T) =
1 + δ√
C1(Ω,T)

.

Conversely, if the samples are not (K, δ)-dense (e.g. if δ = 1), but arise from a Fourier frame, then
as shown in the previous section, stable reconstruction is also possible. Moreover, we have the
estimate

C(Ω,T) ≤ CB(Ω,T) =

√
B√

C1(Ω,T)
,

in this setting. Provided the upper frame bound B is known, this estimate can be computed. If B
is unknown (which is often the case in practice), then we may use the limiting process described in
Lemma 3.7 to compute C2(Ω), and therefore C(Ω,T), to arbitrary accuracy. Note that the same
process can also be used in the case of (K, δ)-dense samples. But the improvement in doing so is
likely marginal over the estimate C2(Ω) ≤ (1 + δ)2 ≤ 4 (recall that δ ≤ 1).

5 Reconstructions in wavelets

In the previous section we established that stable, quasi-optimal reconstruction in arbitrary sub-
spaces T is possible, provided in the (K, δ)-dense case the bandwidth K is taken sufficiently large
or in the frame case the parameter N is chosen appropriately large. We now turn our attention to
the question of precisely how large K and N need to be for the important case where T consists the
first M terms of a wavelet basis. Our main result is to show that K (or N) needs to scale linearly
in M to ensure stable, quasi-optimal reconstruction in this setting.

5.1 Preliminaries

Our interest lies in wavelet bases on the interval [0, 1]. Following [30], we consider three standard
constructions – periodic, folded and boundary wavelets – which will be introduced in the next three
subsections. First, however, we recall the definition of a multiresolution analysis (MRA).

Definition 5.1. A multiresolution analysis of L2(R) generated by a scaling function φ ∈ L2(R) is
a nested sequence of closed subspaces {0} ⊆ · · · ⊆ V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ L2(R) such
that

(i) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0},

(ii) for all j ∈ Z, f(·) ∈ Vj if and only if f(2·) ∈ Vj+1,

(iii) the collection {φ(· − k)}k∈Z forms a Riesz basis for V0.

Recall that a system {φ(·−k)}k∈Z forms a Riesz basis for V0 if and only if there exists constants
d1, d2 > 0 such that

d1

∑
k∈Z
|αk|2 ≤

∥∥∥∥∥∑
k∈Z

αkφ(· − k)

∥∥∥∥∥
2

≤ d2

∑
k∈Z
|αk|2, ∀{αk}k∈Z ∈ l2(Z),
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and {φ(· − k)}k∈Z forms an orthonormal basis for V0 if and only if d1 = d2 = 1. We recall also that
this is equivalent to the condition

d1 ≤
∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 ≤ d2, a.e. ω ∈ [0, 1]. (5.1)

In particular, the optimal Riesz basis constants are given by

d1 = essinf
ω∈[0,1]

∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 , d2 = esssup

ω∈[0,1]

∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 .

5.1.1 Periodic wavelets

Suppose that {ψj,k}j,k∈Z is a wavelet basis of L2(R) associated to an MRA with scaling function φ.
Define the periodizing operation

f(x) 7→ fper(x) =
∑
k∈Z

f(x+ k), (5.2)

and let ψper
j,k and φper

j,k be the corresponding periodic wavelets and scaling functions. Define the
periodized MRA spaces

V per
j = span

{
φper
j,k : k = 0, . . . , 2j − 1

}
, W per

j = span
{
ψper
j,k : k = 0, . . . , 2j − 1

}
.

Note that the maximal index k is finite, since φper
j,k+2j

= φper
j,k and likewise for ψper

j,k .
Now let J ∈ N0 be given. Then

L2(0, 1) = V per
J ⊕W per

J ⊕W per
J+1 ⊕ · · ·,

and we may therefore introduce the finite-dimensional reconstruction space T by truncating the
right-hand side:

T = V per
J ⊕W per

J ⊕W per
J+1 ⊕ · · · ⊕W

per
R−1. (5.3)

Note that dim(T) = 2R. Since the original wavelets have an MRA, we also have that

T = V per
R = span

{
φper
R,k : k = 0, . . . , 2R − 1

}
.

Our primary interest in this paper lies with wavelet bases having compact support. Without
loss of generality, we now suppose that supp(φ) ⊆ [−p + 1, p] for p ∈ N. Note the following: if
supp(f) ⊆ [0, 1] then f(x) = fper(x) for x ∈ [0, 1]. In particular, since

supp(φR,k) = [(k − p+ 1)/2R, (k + p)/2R],

we have that φper
R,k(x) = φR,k(x), x ∈ [0, 1], whenever k = p, . . . , 2R−p−1. Hence we may decompose

the space T into
T = Tleft ⊕ Ti ⊕ Tright, (5.4)

where
Ti = span

{
φR,k : k = p, . . . , 2R − p− 1

}
,

contains interior scaling functions with support in (0, 1) and

Tleft = span
{
φper
R,kI[0,1] : k = 0, . . . , p− 1

}
, Tright = span

{
φper
R,kI[0,1] : k = 2R − p, . . . , 2R − 1

}
,

17



contains the periodized scaling functions. Here I[0,1] is the indicator function of the interval [0, 1].

Whilst not strictly necessary at this point, we add this function to the definitions of Tleft and Tright

so as to clarify that they are to be considered as subspaces of H = {g ∈ L2(R) : supp(g) ⊆ [0, 1]}
in our setting, and not L2(R).

Remark 5.2 The stipulation that supp(φ) ⊆ [−p+1, p] with p ∈ N makes little difference (besides
affecting the constant) to the main result we establish in this section regarding C(Ω,T) with T as
above. The key point is that φ should have compact support. In which case we can always find
p ∈ N such that supp(φ) ⊆ [−p+ 1, p].

5.1.2 Folded wavelets

The above process of periodization for creating wavelet bases on [0, 1] is widely used in standard
implementations, since it is extremely simple. However, vanishing moments of the wavelets are lost
due to the enforcement of periodic boundary conditions. This effectively introduces a discontinuity
of the signal at the boundaries, and translates into lower approximation orders.

Folded wavelets remove the artificial signal discontinuity introduced by periodization and allow
for one vanishing moment to be retained. This is achieved via the folding operation

f(x) 7→ f fold(x) =
∑
k∈Z

f(x− 2k) +
∑
k∈Z

f(2k − x). (5.5)

This approach is most commonly used for the CDF wavelets [15]. In this case, one obtains biorthog-
onal bases of wavelets for H. Note that we have

V fold
j = span

{
φfold
j,k : k = 0, . . . , 2j − ι

}
, W fold

j = span
{
ψfold
j,k : k = 0, . . . , 2j − 1

}
,

where ι takes value 0 if the wavelets are symmetric about x = 1/2 and 1 if they are antisymmetric.
Much as before, we define the finite-dimensional reconstruction space

T = V fold
J ⊕W fold

J ⊕W fold
J+1 ⊕ · · · ⊕W fold

R−1, (5.6)

and note that
T = V fold

R = span
{
φfold
R,k : k = 0, . . . , 2R − ι

}
,

As in the case of periodic wavelets, we can decompose T into three subspaces containing interior
and boundary wavelets respectively. As before, suppose that supp(φ) ⊆ [−p + 1, p], p ∈ N. Since
f(x) = f fold(x) for x ∈ [0, 1] whenever supp(f) ⊆ [0, 1], we have

T = Tleft ⊕ Ti ⊕ Tright,

where
Ti =

{
φR,k : k = p, . . . , 2R − p− 1

}
,

and

Tleft =
{
φfold
R,kI[0,1] : k = 0, . . . , p− 1

}
, Tright =

{
φfold
R,kI[0,1] : k = 2R − p, . . . , 2R − ι

}
.
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5.1.3 Boundary wavelets

Unfortunately, folded wavelets only retain one vanishing moment, and consequently do not lead to
high approximation orders for smooth functions. To get such orders, one may follow the boundary
wavelet construction of Cohen, Daubechies & Vial [16]. Let p ∈ N be given and denote the
corresponding scaling and wavelet functions by φ and ψ. Note that the support of these functions
is contained in [−p+ 1, p]. We define a new basis on [0, 1] as follows. We set

φint
j,k(x) =


2j/2φ(2jx− k) p ≤ k < 2j − p
2j/2φleft

k (2jx) 0 ≤ k < p

2j/2φright
2j−k−1

(2j(x− 1)) 2j − p ≤ k < 2j ,

(5.7)

and similarly for the wavelet functions ψint
j,k. Here the functions φleft

k and φright
k are particular

boundary scaling functions. See [16] for details. We may now define an MRA

V int
j = span

{
φint
j,k : k = 0, . . . , 2j − 1

}
, W int

j = span
{
φint
j,k : k = 0, . . . , 2j − 1

}
,

which, for J ≥ log2(2p) gives the reconstruction space

T = V int
J ⊕W int

J ⊕ · · · ⊕W int
R−1 = V int

R . (5.8)

Note that, as before, we may decompose

T = Tleft ⊕ Ti ⊕ Tright,

where
Ti = span

{
φR,k : k = p, . . . , 2R − p− 1

}
,

contains the unmodified scaling functions with support in [0, 1] and

Tleft = span
{
φint
R,kI[0,1] : k = 0, . . . , p− 1

}
, Tright = span

{
φint
R,kI[0,1] : k = 2R − p, . . . , 2R − 1

}
.

Note that the wavelets described above are particularly well suited for smooth functions. Indeed,
if f ∈ Hs(0, 1), where Hs(0, 1) denotes the usual Sobolev space and 0 ≤ s < p, then the error

‖f − PTf‖ = O
(
2−sR

)
, R→∞, (5.9)

where T is the subspace (5.8). Since NUGS is quasi-optimal, we therefore obtain exactly the
same approximation rates when reconstructing f from nonuniform Fourier samples, provided the
bandwidth K (or N in the frame case) is chosen suitably large. Our main results below establish
that K (or N) need only scale linearly in M = 2R to guarantee this.

Remark 5.3 Note that the wavelets introduced in this section – namely, periodic, folded or bound-
ary – are considered as functions with support contained in [0, 1], even though they are actually
defined over R. In particular, their Fourier transforms are taken as integrals over [0, 1], as op-
posed to R. Conversely, the scaling function φ is defined over the whole of R, and thus its Fourier
transform is also taken over R.
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5.2 Main results

5.2.1 General wavelets

We commence with the (K, δ)-dense case:

Theorem 5.4. Let Ω be a (K, δ)-dense sampling scheme and suppose that T is the reconstruction
space (5.3) of dimension 2R generated by the first 2R elements of a periodic wavelet basis (see
§5.1.1). Suppose that either of the following conditions holds:

(i) the scaling function φ ∈ L2(R) and {φ(· − k)}k∈Z forms an orthonormal basis of V0,

(ii) the scaling function φ satisfies

|φ̂(ω)| ≤ c

(1 + |ω|)α
, ω ∈ R, (5.10)

for some α > 1
2 , and the system {φ(· − k)}k∈Z forms a Riesz basis of V0.

Then for any 0 < ε < 1−δ there exists a c0 = c0(ε) such that if K ≥ c0(ε)2R then the reconstruction
constant

C(Ω,T) ≤ 1 + δ

1− δ − ε
.

Theorem 5.5. Let Ω be a (K, δ)-dense sampling scheme and suppose that either: (i) T is the
reconstruction space (5.6) of dimension 2R generated by the first 2R elements of the folded wavelets
basis of §5.1.2, or (ii) T is the reconstruction space (5.8) of dimension 2R generated by the first 2R

elements of the folded wavelets basis of §5.1.3. Suppose that {φ(· − k)}k∈Z is a Riesz basis for V0

and that φ satisfies (5.10) for some α > 1
2 . Then given 0 < ε < 1− δ there exists a c0 = c0(ε) such

that

C(Ω,T) ≤ 1 + δ

1− δ − ε
, K ≥ c0(ε)2R.

These theorems state that the bandwidth K needs to scale linearly with the dimension of the
reconstruction space T in the case of wavelets. Note that the smoothness assumption (5.10) is
extremely mild. For example, it holds if φ ∈ Hα(R) for α > 1

2 , and consequently includes all cases
of interest in practice. We remark also that the stipulation of a Riesz basis in these theorems is
not necessary since this is implied by the MRA property. It is included merely for clarity.

We now consider the frame case. To this end, let {ωn}n∈Z be a sequence such that the set
{e2iπωn·I[0,1](·)}n∈Z forms a Fourier frame for H. For simplicity, we assume that the ωn are nonde-
creasing.

Theorem 5.6. Let Ω = {ωn : |n| ≤ N}, where {ωn : n ∈ Z} is a nondecreasing sequence that gives
rise to a Fourier frame with frame bounds A and B. Let T be the reconstruction space of dimension
2R consisting of either periodic (§5.1.1), folded (§5.1.2) or boundary wavelets (§5.1.3), and suppose
that φ satisfies (5.10) for some α > 1

2 . Then given 0 < ε < A there exists a c0 = c0(ε) such that

C(Ω,T) ≤
√

B

A− ε
, ∀N ≥ c0(ε)2R.

These results, in combination with (5.9) imply the following important corollary for NUGS with
boundary wavelets:
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Corollary 5.7. Let T be the reconstruction space consisting of the boundary wavelets of §5.1.3. If
f ∈ Hs(0, 1), where 0 ≤ s < p, let f̃ denote the NUGS reconstruction based on a sampling scheme
Ω. Then ‖f − f̃‖ = O (K−s) if Ω is as in Theorem 5.5 and ‖f − f̃‖ = O (N−s) when Ω is as in
Theorem 5.6.

This result illustrates a critically important facet of NUGS. Namely, up to constant factors, it
obtains optimal convergence rates in terms of the sampling bandwidth when reconstructing smooth
functions with boundary wavelets.

5.2.2 Explicit estimates for Haar wavelets and digital signal models

The main theorems above, Theorems 5.4–5.6, do not give explicit bounds for the constant C(Ω,T).
In general, getting explicit bounds is difficult, due primarily to the contributions of the boundary
subspaces Tleft and Tright. However, for the important case of Haar wavelets, there are no such
terms, and this means that explicit bounds are possible.

An important motivation for studying the Haar wavelet case is that it corresponds to the
situation of a digital model for the signal f . Specifically, the reconstruction space for Haar wavelets

T = span
{
φ ∪ {ψj,k : k = 0, . . . , 2j − 1, j = 0, . . . , R− 1}

}
,

is a special case corresponding to M = 2R of reconstruction space

U = UM =
{
g ∈ L2(0, 1) : g|[m/M,(m+1)/M) = constant, m = 0, . . . ,M − 1

}
, M ∈ N, (5.11)

consisting of piecewise constant functions (i.e. digital signals where 1/M is the pixel size). Note
that

UM = span
{√

Mφ(M · −m) : m = 0, . . . ,M − 1
}
, (5.12)

is a subspace generated by shifts of the pixel indicator function φ(x) = I[0,1](x). This digital signal
model is popular in imaging. In particular, it is the basis of the widely-used the fast, iterative
reconstruction technique for MRI [38].

Our next result gives an explicit upper bound for the reconstruction constant in this case:

Theorem 5.8. Let Ω be a (K, δ)-dense sampling scheme and let T ⊆ UM , where UM is given by
(5.12) for φ(x) = I[0,1](x) and M ≤ 2K. Then the following hold:

(i) If 2K/M ∈ N then

C(Ω,T) ≤ π

2

(
1 + δ

1− δ

)
.

(ii) If 2K/M /∈ N and M ≥ 2 then

C(Ω,T) ≤ c0

(
1 + δ

1− δ

)
, c0 =

1

sinc (π/2 + πδ/M)
.

In particular, c0 ∼ π/2 for M � 1.

This theorem demonstrates that reconstruction constant is always mild whenever M is at most
2K. Note that the iterative reconstruction technique [38] is a specific instance of NUGS, where the
term ‘iterative’ refers to the use of conjugate gradient-type algorithms to solve the least squares
problem (recall the discussion in §3.4). Thus, Theorem 5.8 provides an explicit guarantee for stable,
quasi-optimal reconstruction with the iterative method. We note, however, that NUGS allows for
reconstructions in arbitrary subspaces. In particular, spaces T that are better suited for the signal
f to be recovered, such as those consisting of the higher-order, boundary wavelets discussed in
§5.1.3, for example.
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Remark 5.9 Theorem 5.8 can be easily generalized to the case where φ ∈ L2(R) is an arbitrary
kernel such that (i) {φ(· − k)}k∈Z forms a Riesz basis and (ii) UM ⊆ H. Note that (ii) means that
none of the shifted versions

√
Mφ(M · −m) can overlap with the interval endpoints x = 0 and

x = 1. Thus such spaces have poor approximation properties for functions that do not themselves
vanish at the endpoints. In such cases, it is preferable to consider the interval wavelet constructions
based on periodic, folded or boundary wavelets, as described in the previous section, and whose
reconstruction constants are addressed by Theorems 5.4 and 5.5 (albeit without explicit bounds).

5.3 Proofs

We first require the following technical lemma:

Lemma 5.10. Let I ⊆ N be a finite index set and suppose that {ϕn : n ∈ I} ⊆ H is a Reisz basis
for its span T = span{ϕn : n ∈ I} with constants d1 and d2. Let I be partitioned into disjoint
subsets I1, . . . , Ir, and write Ti = span{ϕn : n ∈ Ii}. Let E(T, z) and Ẽ(T, N) be given by (4.4)
and (4.9) respectively. Then

E(T, z) ≤

√√√√d2

d1

r∑
i=1

E(Ti, z)2, Ẽ(T, N) ≤

√√√√d2

d1

r∑
i=1

Ẽ(Ti, N)2

Proof. Let f =
∑

n∈I αnϕn ∈ T\{0} and write

f =
r∑
i=1

fi, fi =
∑
n∈Ii

αnϕn.

Note that

‖f̂‖2R\(−z,z) ≤

(
r∑
i=1

‖f̂i‖R\(−z,z)

)2

≤

(
r∑
i=1

E(Ti, z)‖fi‖

)2

≤
r∑
i=1

E(Ti, z)
2

r∑
i=1

‖fi‖2.

Also, since {ϕn}n∈I forms a Riesz basis, we have
∑r

i=1 ‖fi‖2 ≤ d2/d1‖f‖2. Therefore

‖f̂‖2R\(−z,z)
‖f‖2

≤ d2

d1

r∑
i=1

E(Ti, z)
2.

Taking the supremum over f now gives the result for E(T, z). For Ẽ(T, N), we first note that∑
|n|>N |f̂i(ωn)|2 <∞, i = 1, . . . , r, since {ωn}n∈Z gives rise to the Fourier frame and fi ∈ L2(0, 1),

i = 1, . . . , r. Therefore, we can apply Minkowski’s inequality to get√ ∑
|n|>N

|f̂(ωn)|2 ≤
r∑
i=1

√ ∑
|n|>N

|f̂i(ωn)|2.

Thus, ∑
|n|>N

|f̂(ωn)|2 ≤

(
r∑
i=1

Ẽ(Ti, N)‖fi‖

)2

≤ d2

d1
‖f‖2

r∑
i=1

Ẽ(Ti, N)2,

as required.
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Recall that all the wavelet reconstruction systems introduced in the previous section can be
decomposed into interior wavelets having support in [0, 1] and boundary wavelets that intersect
the endpoints x = 0, 1. This lemma allows us to estimate the residuals E(T, z) and Ẽ(T, N) by
considering each subspace separately.

The next two results address the interior wavelets:

Proposition 5.11. Let φ ∈ L2(R) have compact support and suppose that {φ(· − k)}k∈Z forms a
Riesz basis for its span with constants d1 and d2. Let M ∈ N, M1,M2 ∈ Z and

T = span
{√

Mφ(M · −m) : m = M1, . . . ,M2

}
,

and suppose that M,M1,M2 are such that T ⊆ H. Then the following hold:

1. Given ε > 0 there exists a c0 = c0(ε) such that

E(T, z)2 < 1− d1

d2
+ ε, z ≥ c0M.

2. Suppose that φ satisfies (5.10) for some α > 1
2 . Then there exists a c0 = c0(ε) such that

E(T, z)2 < ε, z ≥ c0M.

Proof. Let f ∈ T and write

f(x) =
√
M

M2∑
k=M1

akφ(Mx− k).

Since {φ(· − k)}k∈Z is a Riesz basis, we find that

d1

M2∑
k=M1

|ak|2 ≤ ‖f‖2 ≤ d2

M2∑
k=M1

|ak|2. (5.13)

Moreover, a simple calculation gives that

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ
( ω
M

)
, ω ∈ R, (5.14)

where Ψ(x) =
∑M2

k=M1
ake
−2πikx is a trigonometric polynomial with

‖Ψ‖2 =

M2∑
k=M1

|ak|2.

Thus, using (5.13) we get
d1‖Ψ‖2 ≤ ‖f‖2 ≤ d2‖Ψ‖2. (5.15)

We now estimate ‖f̂‖2(−z,z). By (5.14), we have

‖f̂‖2(−z,z) =
1

M

∫
|ω|<z

|φ̂(ω/M)|2 |Ψ(ω/M)|2 dω =

∫
|t|<z/M

|φ̂(t)|2 |Ψ(t)|2 dt.

23



Suppose that z ≥M and write bz/Mc = n0 + 1, where n0 ∈ N0. Then, since Ψ is 1-periodic,

‖f̂‖2(−z,z) ≥
∫ n0+1

t=−n0

|φ̂(t)|2 |Ψ(t)|2 dt

=
∑
|n|≤n0

∫ 1

0
|φ̂(t+ n)|2 |Ψ(t+ n)|2 dt

≥

 min
t∈[0,1]

∑
|n|≤n0

|φ̂(n+ t)|2
∫ 1

0
|Ψ(t)|2 dt

≥ 1

d2

 min
t∈[0,1]

∑
|n|≤n0

|φ̂(n+ t)|2
 ‖f‖2, (5.16)

where the final inequality follows from (5.15). By [5, Lem. 5.4], there exists an n0 ∈ N sufficiently
large such that the term in brackets is greater than d1 − εd2. Thus we get

‖f̂‖2(−z,z) ≥
(
d1

d2
− ε
)
‖f‖2.

We now use the definition of E(T, z)2 to complete part 1. of the proof.

Our approach for part 2. will be similar, but we shall estimate the tail ‖f̂‖2R\(−z,z). Repeating
the steps of the above proof, we find that

‖f̂‖2R\(−z,z) ≤
1

d1

 sup
t∈[0,1]

∑
|n|≥n0

|φ̂(n+ t)|2
 ‖f‖2.

Using the smoothness assumption (5.10), we find that

sup
t∈[0,1]

∑
|n|≥n0

|φ̂(n+ t)|2 . (n0)1−2α.

Hence, if z ≥ c0(ε)M for some c0, then we have

‖f̂‖2R\(−z,z) ≤ ε‖f‖
2,

from which the result follows.

Having addressed the case of (K, δ)-dense samples, we now consider frame samples. Recalling
the setup of §4.2, let {ωn : n ∈ Z} be a nondecreasing sequence giving rise to a Fourier frame. Set
ΩN = {ωn : |n| ≤ N}, and suppose that SN is given by (4.7).

Proposition 5.12. Let {ωn}n∈Z ⊆ R be a nondecreasing sequence of frequencies that rise to a
Fourier frame for H, and suppose that φ and T are as in Proposition 5.11. If φ satisfies (5.10) for
some α > 1

2 , then given ε > 0 there exists a c0 = c0(ε) such that

Ẽ(T, N) < ε, ∀N ≥ c0M.

We first require the following two lemmas:
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Lemma 5.13. Let {ωn}n∈Z be an increasing sequence of separated points with minimal separation
η = infn∈Z{ωn+1 − ωn} > 0. Then there exists a set of points {ω̃n}n∈Z with minimal separation at
least η/2 such that {ωn}n∈Z ⊆ {ω̃n}n∈Z and

sup
n∈Z
{ω̃n+1 − ω̃n} ≤ η.

Proof. Let n ∈ Z. If ωn+1 − ωn = η then we do nothing. Otherwise, let k ∈ N be the smallest
integer such that ωn+1 − ωn ≤ (k + 1)η. Introduce the new points

ωn + rη, r = 1, . . . , k − 1,

as well as
1

2
(ωn + (k − 1)η + ωn+1) .

These new points are at least η/2 separated, and have maximal separation at most η.

Lemma 5.14. Let x0 ≤ x1 < x2 < . . . < xN ≤ xN+1 where N ∈ N ∪ {∞}, and suppose that δ =
maxn=0,...,N{xn+1−xn} <∞. Let f ∈ H1(a, b), where a = 1

2(x1+x0), b = 1
2(xN+1+xN ) and H1(a, b)

denotes the standard Sobolev space of first order on the interval (a, b). If µn = 1
2(xn+1 − xn−1),

n = 1, . . . , N , then the following inequalities hold:(
‖f‖[a,b] −

δ

π
‖f ′‖[a,b]

)2

≤
N∑
n=1

µn|f(xn)|2 ≤
(
‖f‖[a,b] +

δ

π
‖f ′‖[a,b]

)2

.

Proof. The proof of this lemma is similar to that of Lemma 4.2. Let zn = 1
2(xn + xn−1) and define

χ(x) =
∑N

n=1 f(xn)I[zn,zn+1)(x). Note that z1 = a, zN+1 = b and that

N∑
n=1

µn|f(xn)|2 = ‖χ‖2[a,b].

We now have

‖f − χ‖2[a,b] =
N∑
n=1

∫ zn+1

zn

|f(x)− f(xn)|2 dx,

and after an application of Wirtinger’s inequality, we obtain

‖f − χ‖2[a,b] ≤
δ2

π2
‖f ′‖2[a,b],

which gives the result.

Proof of Proposition 5.12. Recall from Theorem 4.6 that any sequence {ωn}n∈Z that gives a frame
is necessarily relatively separated, i.e. it is a finite union of separated sequences. Since we wish to
obtain an upper bound for ∑

|n|>N

|f̂(ωn)|2,

for any f ∈ T, we may therefore assume without loss of generality that {ωn}n∈Z is a separated
sequence with separation η. Moreover, after an application of Lemma 5.13, we may assume without
loss of generality that {ωn}n∈Z is η/2 separated with maximal spacing at most η.
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As in the proof of Proposition 5.11 let f =
∑M2

k=M1
ak
√
Mφ(M · −k) ∈ T and write Ψ̃(x) =∑M2

k=M1
ake
−2πikx so that

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ̃
( ω
M

)
. (5.17)

Let

Ψ(x) = e2πiM3xΨ̃(x) =

M2−M3∑
k=M1−M3

ak+M3e−2πikx, M3 =

⌈
M1 +M2

2

⌉
, (5.18)

so that |Ψ(x)| = |Ψ̃(x)|. By (5.17) we also have |f̂(ω)| = 1√
M
|φ̂(ω/M)||Ψ̃(ω/M)|

= 1√
M
|φ̂(ω/M)||Ψ(ω/M)|, and therefore

∑
n>N

|f̂(ωn)|2 ≤ 1

M

∑
n>N

|φ̂(ωn/M)|2|Ψ(ωn/M)|2

≤ 1

M

∞∑
l=0

sup
ω∈Il
|φ̂(ω/M)|2

∑
n:ωn∈Il

|Ψ(ωn/M)|2,

where Il = [ωN + lM, ωN + (l + 1)M). Since {ωn}n∈Z is separated and increasing, we must have
that ωN & N as N → ∞. In particular ωN > 0 for sufficiently large N . By the assumption on φ,
we therefore obtain∑

n>N

|f̂(ωn)|2 .M2α−1
∞∑
l=0

(ωN + 2lM)−2α
∑

n:ωn∈Il

|Ψ(ωn/M)|2.

We now claim that the result follows, provided∑
n:ωn∈Il

|Ψ(ωn/M)|2 ≤ cM‖Ψ‖2, ∀l = 0, 1, 2, . . . . (5.19)

We shall prove that (5.19) holds in a moment. First, however, let us show how (5.19) implies the
result. Substituting this bound into the previous expression gives

∑
n>N

|f̂(ωn)|2 .M2α
∞∑
l=0

(ωN + 2lM)−2α‖Ψ‖2 .
(ωN
M

)1−2α
‖Ψ‖2.

Similarly, we also get ∑
n<−N

|f̂(ωn)|2 .

(
|ω−N |
M

)1−2α

‖Ψ‖2.

An application of (5.15) now gives

Ẽ(T, N)2 .
1

d1

(
min{ωN , |ω−N |}

M

)1−2α

.

Since ωN , |ω−N | & N as N →∞, the result now follows.
It remains to establish (5.19). Write {ωn/M : ωn ∈ Il} = {x1, . . . , xL} where

ωN/M + l ≤ x1 < x2 < . . . < xL ≤ ωN/M + l + 1,
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and set x0 = x1 and xL+1 = xL. Note that η/(2M) ≤ xn+1 − xn ≤ η/M . Therefore

∑
n:ωn∈Il

|Ψ(ωn/M)|2 =
L∑
n=1

|Ψ(xn)|2 ≤ 2M

η

L∑
n=1

µn|Ψ(xn)|2,

where µn = 1
2(xn+1 − xn−1). Hence, by Lemma 5.14 we have∑

n:ωn∈Il

|Ψ(ωn/M)|2 ≤ 2M

η

[
‖Ψ‖[a,b] +

η

Mπ
‖Ψ′‖[a,b]

]2
,

where a = 1
2(x1 + x0) = x1 and b = 1

2(xL+1 + xL) = xL. Note that |b − a| ≤ 1. Hence since Ψ is
periodic, we get ∑

n:ωn∈Il

|Ψ(ωn/M)|2 ≤ 2M

η

[
‖Ψ‖+

η

Mπ
‖Ψ′‖

]2
.

To prove the result, we only need to show that ‖Ψ′‖ ≤ Mπ‖Ψ‖. Since Ψ is a trigonometric
polynomial given by (5.18), we have

‖Ψ′‖ ≤ 2 max {M2 −M3,M3 −M1}π‖Ψ‖.

Thus it remains to show that M2 − M3,M3 − M1 ≤ M/2. Since T ⊆ H by assumption, the
function φ must have compact support. Let supp(φ) ⊆ [a, b]. Then we must also have that
−a ≤M1 ≤M2 ≤M − b. In particular, M2 −M1 ≤M − (b− a) < M . Therefore

M2 −M3 ≤M2 −
M1 +M2

2
<
M

2
, M3 −M1 ≤

M1 +M2

2
+ 1−M1 ≤

M

2
+ 1− b− a

2
.

Since M3 −M1 ∈ N and b− a > 0 we obtain the result.

We are now in a position to prove Theorems 5.4 and 5.5.

Proof of Theorems 5.4 and 5.5. By Theorem 4.5, it suffices to consider E(T, z). Recall that in all
three cases – periodic, folded or boundary wavelets – the reconstruction space T can be decomposed
as T = Tleft ⊕ Ti ⊕ Tright. Lemma 5.10 now gives

E(T, z)2 ≤ d2

d1

(
E(Tleft, z)2 + E(Ti, z)2 + E(Tright, z)2

)
.

The subspace Ti contains wavelets supported in [0, 1], an application of Proposition 5.11 gives
E(Ti, z)2 < ε in both case (i) and case (ii) of Theorem 5.4 (recall in case (i) that {φ(· − k)}k∈Z is
an orthonormal basis, and therefore d1 = d2 = 1), as well as in Theorem 5.5. Thus it remains to
show in all cases that E(Tleft, z) and E(Tright, z) can be made arbitrarily small with z & 2R

Consider the subspace Tleft (the case of Tright is identical). For all three wavelet constructions,
we may write

Tleft = span
{

ΦR,kI[0,1] : k = 0, . . . , p− 1
}
,

where ΦR,k is either φper
R,k (periodic), φfold

R,k (folded) or φint
R,k (boundary). The functions ΦR,kI[0,1]

form a Riesz basis for Tleft with bounds d1 and d2. Hence, if

f =

p−1∑
k=0

αkΦR,kI[0,1] ∈ Tleft,
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then

d1

p−1∑
k=0

|αk|2 ≤ ‖f‖2 ≤ d2

p−1∑
k=0

|αk|2.

Now consider ‖f̂‖R\(−z,z). By the Cauchy–Schwarz inequality and the above inequality,

‖f̂‖R\(−z,z) ≤
p−1∑
k=0

|αk|‖(ΦR,kI[0,1])
∧‖R\(−z,z) ≤

√
p/d1‖f‖ max

0≤k≤p−1

{
‖(ΦR,kI[0,1])

∧‖R\(−z,z)
}
,

Thus, to complete the proof, we only need to show that there exists a c0 = c0(ε) such that

‖(ΦR,kI[0,1])
∧‖R\(−z,z) < ε, ∀k = 0, . . . , p− 1, (5.20)

whenever z ≥ c0(ε)2R.
Assume now that 2R−1 > p. Then one can determine the following:

(a) For periodic wavelets, ΦR,k(x) = φR,k(x) + φR,k(x− 1).

(b) For folded wavelets, ΦR,k(x) = φR,k(x) + φR,k(−x).

(c) For boundary wavelets, ΦR,k(x) can be written as a finite linear combination of the functions
φR,k(x), where k = −p+ 1, . . . , p− 1.

Note that (a) and (b) follow by first writing φper
R,k and φfold

R,k in terms of infinite sums using the
periodization and folding operations (5.2) and (5.5) and then by using the fact that supp(φ) ⊆
[−p+ 1, p]. Case (c) was shown in [16]. Since in all cases ΦR,k can be written as a finite sum with
a number of terms independent of R, it therefore suffices to show that

‖(φR,kI[0,1])
∧‖R\(−z,z), ‖(φR,k(· − 1)I[0,1])

∧‖R\(−z,z), ‖(φR,k(−·)I[0,1])
∧‖R\(−z,z) < ε, (5.21)

where k = −p + 1, . . . , p + 1 for the first term and k = 0, . . . , p − 1 for the second two terms,
whenever z ≥ c0(ε)2R. Note that

∣∣∣(φR,k(·+ l)I[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣∣∣
∫ 2R(l+1)−k

2Rl−k
φ(y)e−2πiωy/2R dy

∣∣∣∣∣ .
Suppose that l = 0. Then the integration interval is [−k, 2R − k]. Since supp(φ) = [−p+ 1, p], we
can replace this by [−k, p] to give∣∣∣(φR,k(·)I[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣φ̂[−k,p](ω/2R)
∣∣∣ , k = −p+ 1, . . . , p− 1,

where, for a < b,
φ[a,b](x) = φ(x)I[a,b](x).

Similarly, for l = −1 we have∣∣∣(φR,k(· − 1)I[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣ ̂φ[−p+1,k](ω/2R)
∣∣∣ , k = 0, . . . , p− 1.

Likewise ∣∣∣(φR,k(−·)I[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣ ̂φ[−p+1,k](−ω/2R)
∣∣∣ , k = 0, . . . , p− 1.
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Thus, to establish (5.21), and therefore (5.20), it suffices to estimate the Fourier transforms of the
functions φ[a,b] for (a, b) = (−k, p), k = −p+ 1, . . . , p− 1, and (a, b) = (−p+ 1, k), k = 0, . . . , p− 1.
We now note the following:

‖2−R/2f(·/2R)‖R\(−z,z) = ‖f‖R\(−z/2R,z/2R), f ∈ L2(R).

In particular, for any fixed f ,
‖2−R/2f(·/2R)‖R\(−z,z) < ε, (5.22)

provided z ≥ c2R for appropriately large c > 0. Since the total number of functions φ[a,b] is less
than 2p, and hence bounded independently of R, we obtain (5.21) and therefore (5.20).

Proof of Theorem 5.6. By Theorem 4.7, we may consider Ẽ(T, N). Proceeding in a similar manner
to the previous proof, we see from Lemma 5.10 that it suffices to estimate Ẽ(Ti, N), Ẽ(Tleft, N)
and Ẽ(Tright, N) separately. As before, Ẽ(Ti, N) can be bounded using Proposition 5.12, and hence
it remains to derive bounds for Ẽ(Tleft, N) and Ẽ(Tright, N) only. If we now argue in an identical
way to the previous proof, i.e. by writing the spaces Tleft and Tright as linear combinations of the
functions φ[a,b] whose total number is independent of R, then we see that it suffices to show the
following: for an arbitrary function f ∈ L2(0, 1),

2−R
∑
|n|>N

∣∣∣f̂(ωn/2
R)
∣∣∣2 < ε, (5.23)

provided N ≥ c2R for some c > 0 depending only on f (this replaces the condition (5.22) in the
previous proof). Recall from the proof of Proposition 5.12 that we may assume without loss of
generality that the frame sequence {ωn}n∈Z is separated with separation at least η/2 and maximal
spacing at most η. Thus the points {ω̃n}n∈Z, where ω̃n = ωn/2

R, have maximal spacing at most
η/2R and we find that

2−R
∑
|n|>N

∣∣∣f̂(ωn/2
R)
∣∣∣2 ≤ 2

η

∑
|n|>N

µn|f̂(ω̃n)|2,

where µn = ω̃n+1−ω̃n−1

2 . Since f ∈ H we may apply Lemma 5.14 to get

2−R
∑
|n|>N

∣∣∣f̂(ωn/2
R)
∣∣∣2 ≤ 2

η

[(
‖f̂‖J+ +

η

2Rπ
‖f̂ ′‖J+

)2
+
(
‖f̂‖J− +

η

2Rπ
‖f̂ ′‖J−

)2
]
,

where J+ = (ω̃N ,∞) and J− = (−∞, ω̃−N ). To obtain (5.23) we merely note that f̂ ′ = f̂1 ∈ L2(R),
where f1(x) = xf(x), and max{ω̃N ,−ω̃−N} & N/2R for large N .

Finally, we now prove Theorem 5.8:

Proof of Theorem 5.8. Since we have already shown have C2(Ω) ≤ (1 + δ)2, and since T ⊆ UM , it
is enough to estimate C1(Ω,UM ). For any f ∈ UM , we can write

f(x) =
√
M

M−1∑
m=0

amφ(Mx−m).

Therefore, as before, we get

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ̃
( ω
M

)
, (5.24)
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where, for M0 = bM/2c,

Ψ̃(x) =
M−1∑
m=0

ame−2πimx = e−2πiM0x
M−M0−1∑
m=−M0

am+M0e−2πimx = e−2πiM0xΨ(x),

and Ψ(x) =
∑M−M0−1

m=−M0
am+M0e−2πimx. Note that Ψ is a trigonometric polynomial of degree at

most M0 and moreover, since {φ(· − k)}k∈Z is an orthonormal basis, we have ‖Ψ‖2 = ‖f‖2. Set
xn = ωn/M for n = 0, . . . , N + 1 and let νn = 1

2(xn+1 − xn−1). Then we have

〈Sf, f〉 =

N∑
n=1

νn|Ψ(xn)|2|φ̂(xn)|2. (5.25)

Let us first consider the case 2K/M ∈ N. Note that UM ⊆ U2K in this case, and therefore it
suffices to prove the result for M = 2K. After an application of Lemma 5.14, we obtain

〈Sf, f〉 ≥ min
n=1,...,N

|φ̂(xn)|2
(
‖Ψ‖[a,b] −

δ

2Kπ
‖Ψ′‖[a,b]

)2

≥ d0

(
‖Ψ‖[a,b] −

δ

2Kπ
‖Ψ′‖[a,b]

)2

,

where a = 1
2(x1 + x0) = 1

2(x1 + xN ) − 1
2 , b = 1

2(xN + xN+1) = 1
2(x1 + xN ) + 1

2 and d0 =

minω∈[−1/2,1/2] |φ̂(ω)|2. Note that the second inequality here follows from the observation that
|xn| = |ωn|/M ≤ K/M ≤ 1/2 since the frequencies ωn are (K, δ)-dense. Since b − a = 1 and Ψ is
periodic, we therefore have

〈Sf, f〉 ≥ d0

(
‖Ψ‖ − δ

2Kπ
‖Ψ′‖

)2

≥ d0

(
1− δM0

K

)2

‖Ψ‖2 ≥ d0 (1− δ)2 ‖Ψ‖2,

where the penultimate inequality follows from ‖Ψ′‖ ≤ 2M0π‖Ψ‖. To complete the proof, we note
that |φ̂(ω)| = |sinc(ωπ)| and that |sinc(ωπ)| ≥ |sinc(π/2)| = 2/π for ω ∈ [−1/2, 1/2].

Now suppose that M ≤ 2K is arbitrary. In this case, our first step is to introduce a new subset
of points {x̃p}Ñp=1. We do this as follows. Let n′ be the largest n such that xn ≤ −1/2, and let n′′

be the smallest n such that xn ≥ 1/2. If Ñ = n′′ − n′ + 1, let

x̃p = xp+n′−1, p = 0, . . . , Ñ , x̃Ñ+1 = 2 + xn′−1 + xn′ − xn′′ .

Let ν̃p = 1
2(x̃p+1 − x̃p−1), and note that

ν̃p = νp+n′−1, p = 1, . . . , Ñ − 1.

Moreover, by definition of n′ and n′′, we have

ν̃Ñ =
1

2

(
x̃Ñ+1 − x̃Ñ−1

)
=

1

2
(2 + xn′−1 + xn′ − xn′′ − xn′′+1) + νn′′ ≤ νn′′ .

Therefore, we now obtain the following from (5.25):

〈Sf, f〉 ≥ min
n=n′,...,n′′

|φ̂(xn)|2
Ñ∑
p=1

ν̃p|Ψ(x̃p)|2.

Since the frequencies ωn are (K, δ)-dense, we have that xn′ ≥ −1/2− δ/M and xn′′ ≤ 1/2 + δ/M .
This and an application of Lemma 5.14 now give

〈Sf, f〉 ≥ d0

(
‖Ψ‖[a,b] −

δ

Mπ
‖Ψ′‖[a,b]

)2

, d0 = min
ω∈[−1/2−δ/M,1/2+δ/M ]

|φ̂(ω)|2,
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where

a =
1

2
(x̃1 + x̃0) =

1

2
(xn′ + xn′−1) ,

and

b =
1

2

(
x̃Ñ + x̃Ñ+1

)
=

1

2
(xn′′ + 2 + xn′−1 + xn′ − xn′′) = a+ 1.

Since |b− a| = 1, we now argue exactly as before to give the first result.

6 Bandwidth and ill-conditioning

In the previous section, we established that stable reconstruction is possible, provided the band-
width K of the sampling scales linearly with the dimension M = 2R of the wavelet reconstruction
space. We now consider the constant of this scaling:

Theorem 6.1. Let Ω = {ωn : n = 1, . . . , N} ⊆ [−K,K] for some K > 2
π2 + 1

2 and suppose that S is
given by (3.8) with weights (4.1). Let T be the reconstruction space corresponding to either periodic
(§5.1.1), folded (§5.1.2) or boundary (§5.1.3) wavelets, where 2R−1 > K. Then the reconstruction
constant satisfies

C(Ω,T) ≥ c1/
√
K exp

(
c2(1− z)2R

)
,

where z = max{1
2 ,K/2

R−1} and c1, c2 > 0 depend only on φ.

This theorem, which generalizes a result proved in [5] to the case of nonuniform samples, estab-
lishes the following. Suppose that the size M = 2R of the reconstruction space is roughly 2αK. If
α > 1 then the reconstruction constant C(Ω,T) blows up exponentially fast as M → ∞. In other
words, if the bandwidth K of the sampling is not sufficiently large in comparison to the wavelet
scale R, then ill-conditioning is necessarily witnessed in the reconstruction. Note that this theorem
does not assume density of the samples, just that their maximal bandwidth is K. Conversely, even
if f̂(ω) were known for arbitrary |ω| ≤ K one would still have the same result, i.e. insufficient
sampling bandwidth implies ill-conditioning.

It is instructive to compare this result with Theorem 5.8, which estimates the reconstruction
constant for Haar wavelets. If M ≈ 2αK then Theorem 5.8 demonstrates that C(Ω,T) is bounded
whenever α is less than or equal to the critical value α0 = 1. Conversely, if α > α0 then exponential
ill-conditioning necessarily results as a consequence of Theorem 6.1. For other wavelets, Theorems
5.4 and 5.5 show that stable reconstruction is possible for sufficiently small scaling α, but unlike
the Haar wavelet case, they do not establish the exact value for α0 that delineates the stability and
instability regions.

Theorem 6.1 follows immediately from the following lemma:

Lemma 6.2. Let Ω and S be as in Theorem 6.1. Let T ⊆ H and suppose that T ⊇ U, where

U = span
{√

Mφ(M · −m) : m = M1, . . . ,M2

}
.

for some M ∈ N, M1,M2 ∈ Z and M > 2K. If {φ(· − k)}k∈Z is a Riesz basis for its span with
bounds d1 and d2 then

C(Ω,T) ≥ c1

√
d1

d2K
exp [c2(M2 −M1 − 2)(1− z)] ,

where z = max{1
2 , 2K/M}, and c1, c2 > 0 are independent of Ω,K,M,M1,M2 and φ.
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Proof of Theorem 6.1. In each case, we merely set U = Ti to be the space spanned by the interior
wavelets. The result follows immediately from Lemma 6.2.

To prove Lemma 6.2, we first require the following result:

Lemma 6.3. Let P ∈ N and z ∈ (0, 1
2). Then there exists a constant c > 0 independent of P and

z such that

sup

sup|t|≤1/2 |Ψ(t)|
sup|t|≤z |Ψ(t)|

: Ψ(t) =
∑
|n|≤P

ake
i2πkt, ak ∈ C

 ≥ exp
(
cP (1/2− z′)

)
,

where z′ = max{1
4 , z}.

Proof. See Proposition 6.2 in [5].

Proof of Lemma 6.2. Note that C(Ω,T) ≥ C(Ω,U). Let f ∈ U. Arguing in the usual way, we have

〈Sf, f〉 =
1

M

N∑
n=1

µn|φ̂(ωn/M)|2|Ψ(ωn/M)|2,

where Ψ is the trigonometric polynomial Ψ(x) =
∑M2

k=M1
ake
−2πikx satisfying d1‖Ψ‖2 ≤ ‖f‖2 ≤

d2‖Ψ‖2. Thus

〈Sf, f〉 ≤ sup
|ω|≤K/M

|φ̂(ω)|2 sup
|t|≤K/M

|Ψ(t)|2
(

1

M

N∑
n=1

ωn+1 − ωn−1

2

)

=
2K

M
sup

|ω|≤K/M
|φ̂(ω)|2 sup

|t|≤K/M
|Ψ(t)|2

≤ 2Kd2

M
sup

|t|≤K/M
|Ψ(t)|2,

where the final inequality follows from (5.1). Using the definition (3.5) of C1(Ω,U), we now obtain

C1(Ω,T) ≤ C1(Ω,U) ≤ 2Kd2

Md1
inf

Ψ∈V

{
sup|t|≤K/M |Ψ(t)|2

‖Ψ‖2

}
,

where

V =


M2−M3∑

k=M1−M3

ake
2πikx : ak ∈ C

 , M3 =

⌈
M1 +M2

2

⌉
.

Since M2 −M1 ≤M we have |Ψ(t)|2 ≤ (M + 1)‖Ψ‖2, and therefore

C1(Ω,T) ≤ d2

d1
(2K + 1) inf

Ψ∈V

{
sup|t|≤K/M |Ψ(t)|2

sup|t|≤1/2 |Ψ(t)|2

}
. (6.1)

We shall return to this in a moment. First, however, let us consider C2(Ω). We wish to show that
C2(Ω) ≥ c for any Ω for some c > 0. Suppose first that Ω is (K, δ)-dense. Then by Lemma 4.2,

C2(Ω) ≥

(√
1− ‖f̂‖2R\I/‖f‖

2 − δ

)2

, ∀f ∈ H,
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where I = (−K + 1
2δ,K −

1
2δ). Let f(x) = I[0,1](x), so that f̂(ω) = e−iπωsinc(ωπ). Then we get

C2(Ω) ≥

(√
1− 2

π2(K − 1
2)
− δ

)2

.

Now suppose that Ω is not (K, δ) dense. Then there exists an n = 1, . . . , N such that ωn+1−ωn ≥ δ,
and therefore µn ≥ δ/2. Hence

C2(Ω)‖f‖2 ≥ 〈Sf, f〉 ≥ 1

2
δ|f̂(ωn)|2, ∀f ∈ H.

Picking f(x) = e2πiωnx, we therefore obtain C2(Ω) ≥ 1
2δ. Hence in general

C2(Ω) ≥ max

1

2
δ,

(√
1− 2

π2(K − 1
2)
− δ

)2
 , ∀δ ∈ (0, 1).

Since 1 − 2
π2(K− 1

2
)
> 0, and since δ > 0 was arbitrary, we now find that C2(Ω) ≥ c2 for any Ω.

Combining this with (6.1), we now find that

C(Ω,T) ≥ c
√

d1

d2K
sup
Ψ∈V

{
sup|t|≤1/2 |Ψ(t)|

sup|t|≤K/M |Ψ(t)|

}
.

To complete the proof, we first note that

min{M2 −M3,M3 −M1} ≥
M2 −M1 − 1

2
.

Thus, V contains all trigonometric polynomials of degree
⌊
M2−M1−1

2

⌋
≥ M2−M1

2 −1. An application
of Lemma 6.3 now gives the result.

Remark 6.4 In [4] it was shown that the reconstruction constant of GS (and therefore NUGS
in the case of Fourier frames) is essentially a universal quantity. Specifically, any reconstruction
algorithm that is so-called perfect must have a condition number that is at least that of the GS
reconstruction constant. One can establish an analogous result in the (K, δ)-dense setting. Thus
NUGS is essentially an optimal method for the problem. Moreover, noting Theorem 6.1, we see
that to recover wavelet coefficients up to scale R stably and accurately, it is necessary to take
samples from a bandwidth K that is at least 2R−1, regardless of the method used.

7 Numerical examples

In this final section, we present several numerical examples to illustrate the NUGS framework. We
will focus on the following three nonuniform sampling schemes:

1) Jittered sampling: Let K > 0and let η, ε ∈ (0, 1) be such that ε+ 2η < 1. Set Ñ =
⌊
K
ε

⌋
and

N = 2Ñ + 1. Jittered sampling scheme is given by

ΩN = {ω1, . . . , ωN},

where
ωn = nε+ ηn, n = −Ñ , . . . , Ñ ,

and where ηn ∈ (−η, η) is chosen uniformly at random. Note that ΩN is (K + η, δ)-dense,
where δ = ε + 2η. This sampling scheme is a standard model for jitter error in MRI caused
by the measurement device not scanning exactly on a uniform grid [23].

33



2) Log sampling: Let K > 0, and let ν and δ be fixed parameters such that 2 × 10−ν < δ. Set

Ñ =
⌈
− log10K+ν

log10(1−δ/K)

⌉
and N = 2(Ñ + 1). Log sampling scheme is given by

ΩN = {−ωn}Ñn=0 ∪ {ωn}Ñn=0,

where
ωn = 10−ν+ n

Ñ
(log10K+ν), n = 0, . . . , Ñ .

Note that this gives a (K, δ)-dense sampling sequence. This sampling scheme is a one-
dimensional model for a two- or three-dimensional spiral sampling trajectory. Such tra-
jectories are popular in MRI applications (see §1).

3) Seip’s frame: For a given N ∈ N, set

ΩN = {ωn}−Nn=−1 ∪ {ωn}
N
n=1,

where
ωn = n(1− |n|−1/2), |n| ≥ 1.

In [37], it is shown that the infinite set of frequencies Ω = Ω∞ gives rise to a Fourier frame
with density δ = 1.

The main result proved in §5 is that one requires a linear scaling of the bandwidth K or
truncation index N with the parameter M = 2R for stable reconstruction in wavelet subspaces.
This is illustrated in Table 1 for the Haar and DB4 wavelets. Note that the constant of the scaling
is roughly 1/2, i.e. K (or N) behaves like β2R with β ≈ 1/2. In the case of Haar wavelets, this is
due to the explicit estimates of Theorem 5.8.

T Ω 2R 32 64 128 256 512 1024 T Ω 2R 32 64 128 256 512 1024

Haar
Log K 16 32 64 128 256 512

DB4
Log K 16 32 64 128 256 512

Frame N 20 38 72 139 272 535 Frame N 20 38 72 139 272 535

Table 1: For a given number of reconstruction vectors 2R, the smallest value of K (or N) is shown such
that the reconstruction constant C(Ω,T) is at most 100, where the reconstruction constant is estimated by
using the results given in §4.3. This is done for different reconstruction spaces T – Haar and DB4 – and for
different sampling schemes Ω: Seip’s frame sequence and log sampling scheme with δ = 0.95 and ν = 0.33.

Theorem 6.1 also addresses such scaling by providing a lower estimate. In particular, it shows
that if the scaling β is less than 1/2 then exponential instability necessarily results in the recon-
struction, regardless of the wavelet basis used. This is shown in Table 2 for both Haar and DB4
wavelets. Note also that in the unstable regime, i.e. β < 1/2, the reconstruction f̃ is also far from
quasi-optimal.

T
c0 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250
K 20 24 28 32 36 40

Haar
κ(A) 5.8569e15 2.9255e12 1.8347e05 1.7835 1.6474 1.5768
‖f−f̃‖
‖f−PTf‖ 8.6294e04 7.3412e04 14.4886 1.0016 1.0016 1.0016

DB4
κ(A) 5.0079e15 2.6583e12 1.2918e05 1.6126 1.4744 1.4355
‖f−f̃‖
‖f−PTf‖ 4.0459e06 3.2764e06 303.3421 1.0013 1.0009 1.0008

Table 2: The condition number κ(A) and the error ‖f − f̃‖/‖f − PTf‖ are shown for different bandwidths
K = c02R and different reconstruction spaces: Haar and DB4 wavelets, where 2R = 64 is taken. The jittered
sampling scheme is used for ε = 0.6 and η = 0.15, and the function f(x) = 1/2 cos(4πx) is tested.
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Table 3 considers the case of Haar wavelet reconstructions more closely for the three different
sampling schemes, and in particular, the magnitude of the reconstruction constant C(Ω,T). Recall
in general that ‖f − f̃‖ ≤ C(Ω,T)‖f − PTf‖, where f̃ is the reconstruction. The table suggests
that this estimate is reasonably sharp: for the function considered it is less than four times the true
value of ‖f − f̃‖/‖f − PTf‖ in all cases. Recall also from §3.4 that C(Ω,T) can be approximated
by a limiting process. This is also shown in the table. Moreover, in the (K, δ)-dense case, we see
that the estimate C(Ω,T) ≤ (1+δ)/

√
C1(Ω,T) is also reasonably good (see the discussion in §4.3).

Finally, the table also compares these estimate to the explicit bound derived in Theorem 5.8. As it
is evident, this bound is also reasonably good, being that it is only roughly four times larger than
the exact value of C(Ω,T).

Ω K |Ω| 2R ‖f − f̃‖ ‖f − PTf‖ ‖f−f̃‖
‖f−PTf‖

κ(A) σmax(A4096)
σmin(A)

1+δ
σmin(A)

π
2

1+δ
1−δ

J
it

te
re

d 32 108 64 6.108029e-2 6.086270e-2 1.003575 1.550640 3.722720 4.789203

14.137167
64 215 128 3.049139e-2 3.046354e-2 1.000914 1.568731 3.840036 4.940129
128 428 256 1.523943e-2 1.523580e-2 1.000238 1.595984 3.914947 5.036500
256 855 512 7.618892e-3 7.618401e-3 1.000065 1.591625 4.157735 5.348841

L
og

32 350 64 6.107981e-2 6.086270e-2 1.003567 1.659066 3.415123 4.393487

14.137167
64 814 128 3.049133e-2 3.046354e-2 1.000912 1.682514 3.468100 4.461641
128 1850 256 1.523941e-2 1.523580e-2 1.000237 1.694585 3.489929 4.489723
256 4146 512 7.618890e-3 7.618401e-3 1.000064 1.700702 3.504058 4.507899

F
ra

m
e

32 76 64 6.107987e-2 6.086270e-2 1.003568 2.567407 3.445520

× ×64 144 128 3.049194e-2 3.046354e-2 1.000932 2.520349 3.318792
128 278 256 1.524057e-2 1.523580e-2 1.000313 2.621085 3.588619
256 544 512 7.618910e-3 7.618401e-3 1.000067 2.553133 3.404633

Table 3: The function f(x) = cos(6πx) + 1/2 sin(2πx) is reconstructed by NUGS with Haar wavelets for
different sampling schemes Ω and different bandwidths K. Jittered sampling scheme is used for ε = 0.6
and η = 0.1; and log sampling scheme is used for δ = 0.8 and ν = 0.4. In the last three columns, different
estimates for the reconstruction constant are computed, by using the results from the Sections §3.4, 4.3 and
5.2.2.

We now wish to exhibit the advantage of NUGS: namely, it allows one to reconstruct in a
subspace T that is well suited to the function to be recovered. In Figures 1 and 2 we consider the
reconstruction of two functions using different wavelets. The first function is periodic, hence we use
periodic wavelets, and the second is nonperiodic, and therefore we use boundary wavelets. Note
that in all cases exactly the same set of measurements is used.

As is evident, increasing the wavelet smoothness leads to a smaller error. This is due to the
important property of NUGS described in Corollary 5.7. Namely, since NUGS is quasi-optimal and
since it requires only a linear scaling for wavelet bases, it obtains optimal approximation rates in
terms of the sampling bandwidth.
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Figure 1: A smooth, periodic function reconstructed by Haar, periodic DB2 and periodic DB4 wavelets,
from left to right. Above is the reconstruction f̃ (magenta) and the original function f (blue), and below is
the error |f− f̃ |. In all experiments, the same jittered sampling scheme is used, with K = 128 and 2R = 256.
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Figure 2: A smooth, nonperiodic function reconstructed by Haar, periodic DB2 and boundary DB2, from
left to right. Above is the reconstruction f̃ (magenta) and the original function f (blue), and below is the
error |f − f̃ |. In all experiments, the same jittered sampling scheme is used, K = 128 and 2R = 256.

Next we consider the effect of noise on the NUGS reconstruction. In Table 4 we compare the
actual error in reconstructing f from noisy measurements to the bound provided by the reconstruc-
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tion constant C(Ω,T). As it is evident, the bound is reasonably close to the true noise value. We
also note the robustness of NUGS with respect to noise. This is further illustrated in Figure 3,
where we plot the reconstruction of a function f from noisy measurements. Even in the presence
of large noise with η = 0.1, we obtain a good approximation to f .

T η ‖f − F (f + ηh)‖ estimate T η ‖f − F (f + ηh)‖ estimate T η ‖f − F (f + ηh)‖ estimate

H
aa

r

0 4.4814e-2 9.4811e-2

D
B

2
p

0 3.0899e-3 6.5489e-3

D
B

2
b

0 4.6985e-3 9.6869-3
0.05 6.6628e-2 2.0065e-1 0.05 4.9255e-2 1.1259e-1 0.05 6.9719e-2 1.1521e-1
0.1 1.0830e-1 3.0650e-1 0.1 9.8086e-2 2.1867e-1 0.1 1.3918e-1 2.2073e-1
0.2 2.0221e-1 5.1819e-1 0.2 1.9609e-1 4.3079e-1 0.2 2.7826e-1 4.3178e-1
0.4 3.9689e-1 9.4158e-1 0.4 3.9213e-1 8.5204e-1 0.4 5.5613e-1 8.5386e-1

Table 4: The estimates C̃(Ω,T) (‖f − PTf‖+ η‖h‖) are computed for f(x) = cos(8πx) − 2 sin(2πx) and
h(x) = sin(10πx)I[0,1]/‖ sin(10πx)‖, where C̃(Ω,T) = C3(Ω,T4096)/C1(Ω,T128) (see the Section §4.3), and
Ω is the log sampling scheme with K = 128, δ = 0.95, ν = 0.33 and N = 1512. The computation is done for
different reconstruction spaces T = T128 with Haar, periodic DB2 and boundary DB2 functions.
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Figure 3: The function f(x) = − exp((cos(6πx)) + sin(4πx)) cos(10πx) + cos(4πx) (blue) and the recon-
struction F (f + ηh) (magenta), where h(x) = sinc(14π(x− 0.5))I[0,1]/‖sinc(14π(x− 0.5))‖ and η = 0.1. The
log sampling scheme is used for δ = 0.95, ν = 0.33, K = 256 and N = 3398. From left to right different
reconstruction basis are used for 2R = 256: Haar, periodic DB3 and boundary DB3.

Finally, we compare the NUGS reconstruction to the popular gridding algorithm [26, 36, 40].
Note that in the gridding algorithm, the function f is approximated on an equispaced grid by the
sum

f(m/M) =

∫ K

−K
f̂(ω)e2πiωm/M dω ≈

N∑
n=1

f̂(ωn)e2πiωnm/Mµn, m = 0, . . . ,M,

which can be evaluated efficiently using NUFFTs. A global representation of f on [0, 1] can then
be computed via a standard inverse FFT. Unfortunately, this reconstruction is plagued by artefact,
even when the original function is periodic. This is shown in the left panels of Figures 4 and 5.
Alternatively, one can use the NUGS reconstruction with wavelets. As shown in these figures,
this gives a far superior reconstruction of f , even in the case of discontinuous functions with
sharp peaks (see Figure 5). Recall also that the NUGS reconstruction, much like the gridding
approximation, can also be computed efficiently using NUFFTs (see Remark 3.8). Hence, using
the same measurement data, and with roughly the same computational cost, we are able obtain a
vastly superior reconstruction.
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Figure 4: A periodic function f(x) = 1/2 cos(8πx)− sin(2πx) is reconstructed by gridding (left) and NUGS
with Haar (middle) and DB2 (right) wavelets for 2R = 512. The lower pictures show the error |f − f̃ |. The
jittered sampling scheme is used for ε = 0.7, η = 0.14 and K = 256.
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Figure 5: A discontinuous function reconstructed by gridding, and NUGS with Haar and DB4 wavelets
(from left to right). The reconstruction is in magenta and original in blue. Below, a close-up is shown. The
jittered sampling is used for ε = 0.75 and η = 0.1 where K = 1024 and NUGS is used for 2R = K.
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8 Conclusions and future work

The purpose of this paper was to introduce a framework, NUGS, for stable reconstructions in
arbitrary finite-dimensional subspaces T from nonuniform Fourier samples. We have shown that
this is always possible provided the samples are (K, δ)-dense or arise from a Fourier frame, and
provided the bandwidth K or index N is taken sufficiently large in relation to T. Moreover, for the
important case where T consists of wavelets, we have shown that a linear scaling of K or N with
the dimension M = 2R suffices, but that this scaling cannot be below a certain critical threshold,
otherwise exponential instability necessarily occurs.

There are several topics for future work. First, much of the theory developed in this paper
extends to higher dimensions. This is an important topic, since the primary motivation for this
work deals with the recovery of two- and three-dimensional images. It will be presented elsewhere.
Note that in higher dimensions, it is also important to analyze other reconstruction spaces besides
wavelets, such as curvelets and shearlets.

Second, there is the important question of how the reconstruction constant C(Ω,T) behaves
for other common choices of subspace T. In [3] it was shown when T consists of polynomials of
degree at most M , then one requires O

(
M2
)

uniform Fourier samples to ensure boundedness of
C(Ω,T). This quadratic scaling is in fact necessary, as was shown in [8]. Similarly, when T consists
of trigonometric polynomials, it was shown in [4] that a linear scaling suffices whenever samples
arise from a Fourier frame. We believe both results can be extended to the (K, δ)-dense case, and
leave this for future work.

A third topic for future work involves the choice of the operator S. The theory developed in §3
allows for many other choices of S than that was considered in the latter half of the paper (namely
(3.8) with weights given by (4.1)). It is possible that different choices, possibly depending on the
subspace T, may yield improvements in the magnitude of the reconstruction constant.

Finally, as discussed in §1, the eventual aim of this work is to combine the theory developed
here with compressed sensing tools to allow for recovery of compressible images from relatively few
nonuniform Fourier samples. This is also work in progress. For an extensive discussion in the case
of uniform Fourier measurements we refer to [6].
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[24] M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser. A fast wavelet-based reconstruction
method for Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 30(9):1649–1660, 2011.

[25] M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic analytical phantoms for
parallel Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 31(3):626–636, 2012.

[26] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski. Selection of a convolution function for
Fourier inversion using gridding. IEEE Trans. Med. Imaging, 10:473–478, 1991.

[27] S. Jaffard. A density criterion for frames of complex exponentials. Mich. Math. J., 38(3):339–348, 1991.

[28] A. B. Kerr, J. M. Pauly, B. S. Hu, K. C. Li, C. J. Hardy, C. H. Meyer, A. Macovski, and D. G.
Nishimura. Real-time interactive MRI on a conventional scanner. Magn. Reson. Med., 38(3):355–367,
1997.

[29] A. F. Laine. Wavelets in temporal and spatial processing of biomedical images. Annu. Rev. Biomed.
Eng., 02:511–550, 2000.

[30] S. G. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 3 edition, 2009.

[31] C. H. Meyer, B. S. Hu, D. G. Nishimura, and A. Macovski. Fast spiral coronary artery imaging. Magn.
Reson. Med., 28:202–213, 1992.

[32] R. Nowak. Wavelet-based Rician noise removal for Magnetic Resonance Imaging. IEEE Trans. Image
Proc., 8:1408–19, 1998.

[33] D. Potts and M. Tasche. Numerical stability of nonequispaced fast Fourier transforms. J. Comput.
Appl. Math., 222(2):655–674, 2008.

[34] D. Rosenfeld. An optimal and efficient new gridding algorithm using singular value decomposition.
Magn. Reson. Med., 40(1):14–23, 1998.

[35] D. Rosenfeld. New approach to gridding using regularlization and estimation theory. Magn. Reson.
Med., 48(1):193–202, 2002.

[36] H. Sedarat and D. G. Nishimura. On the optimality of the gridding reconstruction algorithm. IEEE
Trans. Med. Imaging, 19(4):306–317, 2000.

[37] K. Seip. On the connection between exponential bases and certain related sequences in L2(−π, π). J.
Funct. Anal., 130:131–160, 1995.

[38] B. P. Sutton, D. C. Noll, and J. A. Fessler. Fast, iterative image reconstruction for MRI in the presence
of field inhomogeneities. IEEE Trans. Med. Imaging, 22(2):178–188, 2003.

[39] M. Unser and A. Aldroubi. A general sampling theory for nonideal acquisition devices. IEEE Trans.
Signal Process., 42(11):2915–2925, 1994.

[40] A. Viswanathan, A. Gelb, D. Cochran, and R. Renaut. On reconstructions from non-uniform spectral
data. J. Sci. Comput., 45(1–3):487–513, 2010.

[41] J. B. Weaver, Y. Xu, D. M. Healy, and J. R. Driscoll. Filtering MR images in the wavelet transform
domain. Magn. Reson. Med., 21:288–295, 1991.

[42] R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press Inc., San Diego, CA,
first edition, 2001.

41


