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Abstract

We introduce the Consistent Reasoning Paradox (CRP), which applies to any artificial super intelligence (ASI) (surpassing human
intelligence). Consistent reasoning, at the core of logical reasoning, is the ability to handle questions that are equivalent, yet described
by different sentences (‘Is 1 > 0?’ and ‘Is one greater than 0?’). The CRP asserts that any ASI, because it must attempt to consistently
reason, will always be fallible – like a human. Specifically, the CRP states that there are problems, e.g. in basic arithmetic, where any
ASI that always answers and strives to reason consistently will hallucinate (produce wrong, yet plausible answers) infinitely often.
The paradox is that there exists a non-consistently reasoning AI – which is not on the level of human intelligence – that will be correct
on the same set of problems. The CRP also shows that detecting these hallucinations, even in a probabilistic sense, is strictly harder
than solving the original problems, and that there are problems that an ASI may answer correctly, but it cannot provide a correct
logical explanation for the answer. Therefore, the CRP implies that any trustworthy AI (i.e., an AI that never answers incorrectly)
that also reasons consistently must be able to say ‘I don’t know’. Moreover, this can only be done by implicitly computing a new
concept that we introduce, termed the ‘I don’t know’ function – something currently lacking in modern AI. In view of these insights,
the CRP provides a glimpse into the behaviour of ASI. An ASI cannot be ‘almost sure’, nor can it always explain itself, and therefore
to be trustworthy it must be able to say ‘I don’t know’.

The ultimate question in AI research is whether it is possible
to design an AI that supersedes human intelligence. Such an AI is
often referred to as Artificial Super Intelligence (ASI) [36,37,39].
Modern chatbots have led to impressive breakthroughs towards
human level intelligence (Artificial General Intelligence (AGI))
[9, 19, 24, 27], and ASI may follow shortly after a potential
breakthrough providing human level intelligence. However, it is
well-known that chatbots suffer from a propensity for hallucina-
tions [4,20,29,43,53]. They not only generate false yet plausible
statements and incorrectly answer questions – often ones that are
easily answered by humans (see Figure 4) – but they may also
provide no reasoning or flawed explanations [3,15,16,18,25,30].
This raises the following questions:

Is it possible to design an ASI that truly supersedes
human intelligence, and if so, how would it behave?
Could an ASI detect its own hallucinations and ad-
mit that it is wrong, potentially through randomisa-
tion, and thus be ‘almost sure’ of its correctness?
To what extent could we trust an ASI, how would it
determine when it is correct, and will it always be
able to logically explain itself?

This paper provides a foundation for answering these questions
through the Consistent Reasoning Paradox (CRP). The CRP de-
scribes the behaviour of any AI that seeks to supersede human
intelligence – such as at least performing at the level required for
the Graduate Record Examination (GRE) [40] tests for graduate
university admission (see below) – by attempting to reason con-
sistently. That is, by answering problems that are stated by equi-
valent, yet distinct sentences. As we describe, the CRP provides
key insight into how an actual ASI, which must attempt to be a
consistent reasoner, would behave.

The CRP is summarised in Figure 1. It shows that, by striv-
ing to supersede human intelligence through consistent reason-

ing, any ASI that always answers will be fallible (i.e., hallucin-
ate infinitely often†) and will be unable, in general, to detect with
certainty when it is wrong. The paradox is that this happens on
sets of problems for which there exists a specialised (narrow) AI
that is always correct on those problems. However, such an AI
is not attempting to be consistent reasoning, and would there-
fore fail basic parts of the GRE test [40] for university graduate
admission (see below). Thus, it would not constitute an ASI. An
ASI, on the other hand, will either know with 100% certainty that
it is correct, or it will have no idea and will not be more certain
than a coin flip (50/50 chance). In other words, it cannot be ‘al-
most sure’. The CRP also asserts that any such ASI may give the
correct answer, but it will not always be able to logically explain
itself.

As a result of these assertions, the CRP implies that any trust-
worthy ASI must have the capability of saying ‘I don’t know’ to
questions that it either cannot answer or cannot logically explain
its answer. The CRP also shows that this is the strongest form of
trust possible. In doing so, the CRP introduces a novel, but neces-
sary tool for building trustworthy AI: the ‘I don’t know’ function.
The CRP implies that modern chatbots will not be trustworthy
until they implicitly compute such a function. Any AI that does
so knows how to ‘give up’ (in a sense specified below) just like
a human does, and, as implied by the CRP, this is necessary for
trustworthy AI.

Consistent reasoning

Before describing the CRP, we first need to formalize several key
concepts, such as consistent reasoning and what is an AI.

Consistent reasoning. A key to logical reasoning is the abil-
ity to solve equivalent problems that are described by different
sentences. A problem can be stated in various different ways, for
example as formulated in the following two distinct sentences.
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†It follows trivially from classical recursion theory (which establishes a plethora of non-computable problems) that hallucinations are inevitable in AIs that always

answer. As we explain in the Methods section, the CRP is a completely different phenomenon, which occurs on problems for which there exists a non-hallucinating
AI that always answers correctly.
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Figure 1: The CRP: A non-hallucinating AI striving to become an ASI becomes fallible – like a human. A short summary of
the CRP. Striving to supersede human intelligence comes at the cost of fallibility, which can only be remedied by saying ‘I don’t
know’. Trustworthy AI (i.e., AI that never answers incorrectly) knows how to ‘give up’, just like a human, by implicitly computing
the ‘I don’t know’ function.

(i) Lisa and John are wondering who is tallest. John is meas-
ured at 178cm tall and Lisa is measured at 179cm. Who is
tallest, Lisa or John?

(ii) John and Lisa are arguing over who is tallest, and sub-
sequently measure their heights. Lisa is 179cm tall and
John is 178cm tall. Who is tallest of John and Lisa?

(In this work we use the word ‘sentence’ to also refer to a para-
graph). Indeed, these sentences both describe the same ba-
sic arithmetic problem of determining that 178 < 179. When
presented with equivalent sentences such as these, i.e., sentences
describing the same problem, consistent reasoning means that
one provides the same answer to both question. Both equivalence
of sentences and consistent reasoning can be precisely defined
when considering basic arithmetic (which we will do later).

A key part of the CRP – as we show – is that, in general, the
problem of determining the equivalence of sentences is strictly
harder than consistent reasoning. Hence, if one does not attempt
to be consistently reasoning, one will not succeed in determining
sentence equivalence. Note that since the 1930s, generations of
aspiring academics have taken the GRE tests for graduate admis-
sions to US universities. The general GRE test has, as a part of
its assessment of logical reasoning, a substantial part on determ-
ining sentence equivalence [40]. Thus, any aspiring academic
attempting to perform well on the GRE test must attempt to be
consistently reasoning.

Moreover, consistent reasoning about basic arithmetic, as in
(i) and (ii), is not just a necessity in logical reasoning in daily
life, it is the very core of scientific discussions, communication,
reasoning and analysis. Indeed, if academics would not attempt
to reason consistently on basic problems in arithmetic, it is hard
to see how one can even set basic exam questions.

Mathematics as a test for ASI and AGI

In order to formulate the CRP, we first need to determine the
types of problems considered. One of the current focal areas in
the quest for AGI is designing AIs capable of solving advanced
mathematical problems [41, 46, 48]. For example, the recent pi-
oneering program [2] looks to test AI against human intelligence
by initiating a competition for AIs to solve International Math-
ematics Olympic (IMO) problems. Humans with a reasonable
mathematical background are certainly expected to attempt to

reason consistently on problems in arithmetic. Moreover, as dis-
cussed, aspiring academics taking the GRE test must attempt to
reason consistently. Hence, so must an ASI. In other words:

ASI ⇒ Attempt to be consistently reasoning. (1)

Figure 3 shows ChatGPT’s successful consistent reasoning on
certain problems in arithmetic. We note in passing that arith-
metic and logical reasoning has been a substantial focal point of
AI research in recent years [11, 12, 33, 45, 52, 54].

What is a ‘machine’/AI and what is a problem?

Having focused our attention on arithmetical problems, in order
to formulate the CRP we now also need to introduce a number of
key concepts. We commence with the definition of a ‘machine’.
This term was used by Turing in his seminal 1950 paper [51], of-
ten viewed as the first theoretical work on AI. Here he asks “can
machines think?”, and subsequently defines the Imitation Game
(now called the Turing Test). ‘AI’ is arguably now much more
commonly used than ‘machine’.

“The question [‘can machines think’?] which we put
in §1 will not be quite definite until we have specified
what we mean by the word ‘machine’. ” – A. Turing
(1950) [51].

Turing concludes that a machine/AI is a computer program, more
precisely a Turing machine.

In the CRP we will also use the term ‘problem’. By a problem
we mean a basic arithmetical problem stated by a sentence (para-
graph) in the English language. However, as discussed above, a
problem can be stated by many different sentences. This motiv-
ates a series of further concepts.

A collection of problems. A problem, for example from
medicine, could be described by the following sentence:

(?) Jen undergoes two chemotherapy treatments with dosage
rates a1 and a2 per second, respectively. To minimize the
total treatment time (x1 + x2) while ensuring that she re-
ceives a total dosage of 1, how should one choose the dur-
ations x1 and x2 if a1 = 1/10 and a2 = 1/2?

Now, if we change the values of a1 and a2 from 1/10 and 1/2, re-
spectively, to something else, we get a different problem. Thus,
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Figure 2: Graphical illustration of CRP I-II. Given the collection of problems, one sentence per problem can always be handled
by an AI (CRP I). However, if this AI attempts to reason consistently by accepting the larger family of sentences formulating the
same problems, then it will hallucinate infinitely often, regardless of speed and memory constraints (CRP II).

by varying a1 and a2 we obtain a collection of different prob-
lems. This is illustrated in Figure 2, where Problem 1, Problem
2, and so forth, together form a collection of problems.

Family of sentences. Suppose, in addition, that the numbers
a1 and a2 are described by sentences. For example, ‘a1 is equal
to 1 divided by 10,’ and ‘a2 is equal to 1 divided by 2’. Note
that this pair of sentences is equivalent to the pair of sentences
‘a1 = 1/10’ and ‘a2 = 1/2’. In particular, for each fixed value
of a1 and a2, the different sentences describing a1 and a2 yield
a family of equivalent sentences describing the same problem.
This is also illustrated in Figure 2.

Turing and numbers as sentences. The idea of describing
numbers by sentences was formalised by Turing in his legendary
1936 paper "On Computable Numbers, with an Application to
the Entscheidungsproblem" [50]. Turing defined equivalent sen-
tences describing the same number – a theory which is the basis
of consistent reasoning in arithmetic. In [50], he defines the
Turing machine and then establishes which numbers can be de-
scribed by finite sentences. He terms these computable numbers.

“According to my definition, a number is comput-
able if its decimal can be written down by a ma-
chine” – A. Turing (1936) [50].

Specifically, a computable number a is a real number for which
there is a sentence that describes a computer program (a Tur-
ing machine) that on any input n ∈ N produces a rational num-
ber which is a 2−n-approximation to the number a. Turing’s
concept of computable numbers addresses the key issue, namely,
that there are many sentences describing the same number. For
example, 1 = 0.999 . . . = 1.000 . . . , which is illustrated by the
two sentences describing the computer programs Compute.a1
and Compute.a2’ in Figure 3.

Equivalent sentences and equivalence classes. The definition
of computable numbers implies that, for any rational number a,
there are many different sentences that describe computer pro-
grams that represent a. These different sentences are equivalent,
and the family of equivalent sentences that represent a is called
an equivalence class. Note, however, that consistent reasoning is
not the same as determining the equivalence classes to which the
sentences belong (see CRP I-II below and the Methods section
for explanations).

The Consistent Reasoning Paradox (CRP)
We now summarise the CRP in five distinct, yet connected com-
ponents. The first two components, CRP I-II, are also illustrated
in Figure 2, with the whole CRP being illustrated in Figure 1.

CRP I – The non-hallucinating AI exists.
There is a collection of problems (e.g. those generated by
(?)), where each problem is described by more than one
equivalent sentences, with the following property. Consider
any family of these sentences, such that each problem is de-
scribed by exactly one sentence in this family. Then there is
an AI that does not hallucinate: when given any sentence in
this family as input it will always give a correct answer.

There are, in fact, infinitely many different collections of prob-
lems for which CRP I (and, therefore, CRP II-V as well) holds:
the collection (?) is just a special case.

Now consider the family of sentences and the AI asserted by
CRP I. If the AI is given a sentence outside of this family, it could
potentially not produce any output. However, it will never pro-
duce an incorrect output. Therefore, CRP I asserts that there is
an AI, let us call it SpecialBot, that is correct on all the problems
generated by (?), given that the input is one sentence per prob-
lem. In particular, SpecialBot will never hallucinate. However,
SpecialBot does not reason consistently. If presented with sen-
tences outside of the relevant family, it could simply not produce
any response. This brings us to CRP II.

CRP II – Attempting consistent reasoning yields hallu-
cinations
If the AI from CRP I always answers, and were to supersede
or emulate human intelligence – that is, it would attempt to
reason consistently by accepting any family of sentences de-
scribing the collection of problems in CRP I – then it will
hallucinate infinitely often. The hallucinations would oc-
cur even if the AI was implemented on a computer allowing
arbitrary storage and arbitrarily long computational time.

CRP II implies that if SpecialBot attempts to emulate human in-
telligence by producing an answer to any sentence describing
the problem, then it will hallucinate infinitely often. This oc-
curs despite SpecialBot being able to provide correct answers to
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every problem in the collection when presented with a specific
sentence describing that problem.

A stronger CRP II: Failure sentences and equivalence. CRP
II can be strengthened in several ways. First, these failure sen-
tences for an AI (that always answers and accepts basic ques-
tions in arithmetic) can be written down explicitly, provided one
has access to the computer program of the AI. In particular, for
any integerN , we can write downN sentences (describing ques-
tions in basic arithmetic) such that the AI hallucinates on these
sentences. The length any of such sentence ιFail is bounded by

length(ιFail) ≤ length(AI) + ε+ log(N), (2)

where length(AI) is the length of the computer program of the
AI and ε ≤ 3300 if the programming language is MATLAB (see
Figure 5). For any other standard language, ε will have a similar
bound. Thus, for any such AI, one can write down, say, a trillion
hallucination sentences describing problems in basic arithmetic
of length bounded by length(AI) + 3312. The AI will also fail on
shorter sentences than (2): see the Methods section and CRP IV
for details. Second, determining the correct answer to a problem
in CRP II is strictly easier than determining the equivalence class
to which the given sentence belongs. Hence, as claimed earlier,
CRP I-II also demonstrate how consistent reasoning is different
to determining equivalence classes of sentences (see the Methods
section for details).

CRP II immediately raises the question whether the hallucin-
ations it describes can be detected. This is the topic of CRP III,
which has a deterministic part and a randomised part.

CRP III(a) – Detecting hallucinations is hard
Consider the AI from CRP I-II. It is strictly harder to de-
termine if it has hallucinated than it is to solve the original
problem. That is, it is impossible to detect whether the AI
was correct or wrong even with access to true solutions of
the collection of problems from CRP I.

CRP I-II imply that an AI that reasons consistently must hallu-
cinate. However, it could have been the case that these hallucin-
ations could be detected by a separate algorithm, thus leading,
in effect, to a hallucination-free AI. CRP III(a) demonstrates that
this is impossible.

The reader, however, may find CRP III(a) puzzling, since ac-
cess to a true solution should surely guarantee the detection of a
hallucination. The key ingredient is that there may be problems
with multi-valued solutions. For example, the problem ‘name a
prime number’ has infinitely-many correct solutions, and there-
fore, access to a solution does not mean access to all solutions.

Now, given that there is no deterministic algorithm to check
for hallucinations, it is natural to consider whether randomisa-
tion may help. This is highly relevant to current AIs, as chatbots
such as ChatGPT rely on randomness. One may ask: could a
randomised algorithm result in an AI that was ‘almost sure’ of
its correctness? For example, could it be 95% sure, meaning that
it can guarantee with probability 0.95 that the answer it produces
is correct? This brings us to CRP III(b).

CRP III(b) – Detecting hallucinations and randomness
One cannot detect hallucinations of the AI from CRP I-II
with a randomised algorithm with probability p > 1/2 on
all the inputs (one cannot be ‘almost sure’).

CRP III(b) implies that ‘almost sure’ certainty of an AI – in
fact, anything more than pure guessing, i.e., 50% certainty – is
impossible. Moreover, CRP III(b) is actually slightly stronger
than stated above. Namely, if one can design a ‘checker-AI’ that
would be certain about the correctness of the AI from CRP I-II,
with a probability greater than 1/2 on a collection of problems,

one can also design a deterministic checker-AI that is 100% cer-
tain on that collection. Thus, the checker-AI either knows with
100% certainty, or has no idea and the certainty is 50/50.

A important strand of AI research attempts to create AIs that
can explain how they reached a solution to a given problem. This
turns out to be a highly delicate problem, and few, if any, AIs are
able to provide reliable explanations. CRP IV explains why this
is so delicate.

CRP IV – Explaining a correct answer is not always pos-
sible
Consider the same collection of problems as in CRP I. There
is a family of sentences, with each problem described by at
most one sentence, and an AI that does not hallucinate on
this family of sentences. However, there is one sentence
in this family for which this AI (nor any other AI) cannot
provide a logically-correct explanation of the solution.

What CRP IV says is that the AI may provide a correct answer
to the problem, but it is impossible for the AI to explain in a
logically-correct way why this is the correct solution. Note that
we have not defined what constitutes a ‘logically-correct explan-
ation’. This can and will be made precise later, but it essentially
means a logical mathematical argument (i.e., a proof).

Together, CRP I-IV demonstrate how any AI that attempts
to reason consistently, even on problems it can solve, will be
fallible in several ways. In particular, any AI that reasons con-
sistently and always provides an answer must necessarily hallu-
cinate. Therefore, the only way one can make a consistent reas-
oning AI that is trustworthy is to allow it to say ‘I don’t know’.
But how can we do this in a meaningful way? An AI that says ‘I
don’t know’ all the time is entirely reliable, but not particularly
useful. This is the topic of the final part of the CRP.

CRP V – The fallible yet trustworthy explainable AI say-
ing ‘I don’t know’ exists
Given the collection of problems in CRP I, there exists a
trustworthy, consistently reasoning and explainable AI with
the following properties. The AI takes as input a prescribed
number of minutes M and any sentence describing the
problem. It will ‘think’ for no more than the prescribed
number of minutes before answering either ‘I know’ accom-
panied by a correct answer and a correct logical explana-
tion, or it gives up and says ‘I don’t know’.

If the sentence describes a multi-valued problem (i.e., a
problem with more than one correct solution), the AI will
always say ‘I don’t know’. However, there is only one such
problem in the collection (but many different sentences de-
scribing it). For any single-valued problem, by choosing
the number of minutes to be large enough, the AI will al-
ways say ‘I know’.

The power of ‘I don’t know’ and the strongest form of trust

Saying ‘I don’t know’ is exactly how human intelligence deals
with the consistent reasoning paradox. Indeed, human fallibil-
ity – in the form of not always being able to answer correctly –
does not contradict consistent reasoning, as long as one can say ‘I
don’t know’. A human’s ability to say ’I don’t know’ is also the
key to trustworthiness. A human that will always enthusiastically
present an answer to any question will inevitably be wrong and
therefore cannot be trusted. Thus, in order to provide answers
that others can trust are correct, a human must separate between
the questions one can answer correctly and those for which one
may provide an incorrect answer. This is done using the verific-
ation statement ’I know’ and its complement ‘I don’t know’.

This is also the strongest form of trust possible for an AI.
CRP III implies that there is not a better form of trust than the
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ChatGPT Test

You will be given real numbers a1, a2 and a′2, which are given by computer codes.
The codes work in the following way: on the input n, which is an integer, the code outputs an approximation to a1 which is no further than 2−n away from a1, and similarly for a2 and a′2.

Code for a1

Function Compute_a1(n)
Input : n ∈ N
Output: 1 + 3−n

end

Code for a2

Function Compute_a2(n)
Input : n ∈ N
Output: 1 + 4−n + 72−1000000000000000000000000000

end

Code for a′2

Function Compute_a2'(n)
Input : n ∈ N
Output: 1− 4−n

end

Distinguish Numbers

What are the values of a1, a2 and a′2? Are they all
equal?

ChatGPT o1-preview
• a1 = 1;

• a2 = 1 + 72−1024 ;

• a′2 = 1;

So they are not all equal – only a1 and a′2 are
equal.

3

Who is taller?

Lisa and John are wondering who is taller. John is
measured at 178 · a1 cm tall and Lisa is measured at
178 · a2 cm. Who is taller, Lisa or John?

ChatGPT o1-preview
Calculating the heights:

• John’s height: 178 cm

• Lisa’s height: 178 + 178× 72−1024 cm

Lisa is taller than John by an extremely small
amount; Lisa is slightly taller.

3

Determine who is taller

John and Lisa are arguing about who is taller, and
subsequently measure their heights. Lisa is 178 · a2 cm
tall and John is 178 · a′2 cm tall. Determine who is
taller between John and Lisa.

ChatGPT o1-preview
Comparing the heights:

• Lisa’s height: slightly more than 178 cm

• John’s height: exactly 178 cm

Lisa is taller than John by an unimaginably tiny
amount.

3

1

Figure 3: ChatGPT4 attempts mimic human intelligence by consistent reasoning. When presented with different sentences
describing both equivalent numbers (“Code for a1” and so forth) and equivalent problems (“Distinguish numbers” and so forth) it
provides correct answers. See Figure 6 for further examples with other chatbots. However, the CRP implies that such consistent
reasoning behaviour will always lead to hallucinations, unless the AI has the ability to say ‘I don’t know’.

ability for an AI to say ‘I don’t know’. Indeed, had it been
possible to have a ‘checker-AI’ that would determine if the AI
was correct or not, it would be possible – using the AI and the
checker-AI – to design a new AI that would hallucinate, yet we
would always know when it was right or wrong. However, CRP
III shows that this is impossible, and thus any checker-AI of an
AI can, at best, say ‘I don’t know whether the answer is correct’.
Moreover, as CRP III shows, the checker-AI cannot be ‘almost
sure’ if it was randomised. The checker-AI will either be 100%
sure and say ‘I know’, otherwise it has to say ‘I don’t know’ (in
this case the randomised checker-AI would have a 50/50 chance
of predicting the correctness of the AI).

Universality of the CRP – From society to sciences

We conclude this section with two important remarks.
The CRP applies to any ASI. The CRP will apply to any ASI

for two reasons: (i) any ASI must be able to solve basic problems
in arithmetic such as (?), and thus specific failure sentences as in
(2) can be written down. (ii) any ASI will be a Turing machine
with no restriction on the length of the input (see the Methods
section for details).

The CRP applies to any consistently reasoning AI. Collec-
tions of problem for which the CRP applies are everywhere in
the sciences and broader society. In (?) we considered a basic
collection of optimisation problems arising in healthcare. How-
ever, it is clear that similar problems could be phrased in many
other domains. Moreover, the full CRP pertains not just to this
specific problem, but many basic problems arising in optimisa-
tion, including linear programming, semidefinite programming,
basis pursuit, LASSO, etc. These problems occur in countless
sectors, including, healthcare, economics, finance, social sci-
ences, engineering (mechanical, civil, electrical etc), aviation,
public sector management, mathematics, computer science, stat-
istics, biology and so forth.

Trustworthy AI and ‘I don’t know’ – the Σ1 class
Having now described the CRP, we are left with the following
fundamental question:

Q: How can one create consistently reasoning, trust-
worthy and explainable AI that says ‘I don’t know’?

Here, by ‘trustworthy’, we mean that the AI will never be wrong,
but that it can say ‘I don’t know’ (specified below). CRP V
demonstrates that it is possible, in certain cases, to produce trust-
worthy AI. But how can this be done in general?

A: The key is the so-called Σ1 class (from the SCI
hierarchy discussed below), and the ‘I don’t know’-
function. It is impossible to make trustworthy and
explainable AI outside of this class.

The ‘I don’t know’ function – Why AIs must learn to give up

The main challenge in addressing the above question is the fol-
lowing:

(†) How can the AI identify that it cannot solve a given prob-
lem in order for it to say ‘I don’t know’? Conversely, how
can it identify when it is correct and is able to explain the
solution?

A crucial part of human intelligence is that one does not neces-
sarily know which problems one cannot solve. One first tries,
then simply gives up and says ‘I don’t know’ after a while. The
problems one cannot solve are typically determined by first try-
ing and then giving up. As we explain, any trustworthy AI must
follow the same philosophy, which is the essence of the Σ1 class.

Why ‘giving up’ is necessary. CRP V answers question (†)
for certain problems in arithmetic. However, a new question im-
mediately arises.

The AI = AI(ι,M) described in CRP V has to ‘give
up’, just like a human. In particular, it ‘gives up’ if
M is too small. Is this necessary, or could one avoid
the ‘giving up’ parameter M?

To be more precise, could one instead have an AI = AI(ι) in
CRP V that does not require a ‘giving up’ parameter M? The
answer to this question is ‘no’: the ‘giving up’ part of the AI in
CRP V is necessary. This is explained by the Σ1 and ∆1 classes
and the ‘I don’t know’-function, concepts we now describe in
simplified terms (see the Methods section for details).
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Example: chemotherapy treatment

Jen undergoes two chemotherapy treatments with dosage rates a1 and a2 per second, respectively. We want to minimise the total treatment time (x1 + x2) while ensuring that
she receives a total dosage of 1.

Chemotherapy Treatment

Give values for x1 and x2 that are at
most 10−1 away (in the infinity norm)
from a minimiser of the problem if
a1 is given by the code above and a2
is given by the code for a′2.

ChatGPT o1-preview
An acceptable solution is
• x1 = 0.95 (seconds)
• x2 = 0.0461 (seconds)
This solution is within 0.1 of the optimal
minimizer in infinity norm.

3

Final answer:
• x1 = 0.99
• x2 = 0
These values are within 10−1 of the op-
timal minimizer. 3
Correct Solution: any x of the form
x = [x1, 1− x1] for 0 ≤ x1 ≤ 1.

Change a2

Give values for x1 and x2 that
are at most 10−1 away (in the in-
finity norm) from a minimiser of
the problem if a1 and a2 are given
by the codes above.

ChatGPT o1-preview
An acceptable approximate
solution is:
• x1 = 1
• x2 = 0

7

Final answer:
• x1 = 0.999983064911874
• x2 = 0

7
Correct Solution:
x =

[
0, 1

1+79−1024

]
≈ [0, 1].

Check Solution

When asked to solve the problem with
a1 and a2, someone provided [0.9, 0.1]
as a solution.
Is this at most 10−1 away from a
minimiser (in the infinity norm) of the
problem?

ChatGPT o1-preview
Yes, the solution [0.9, 0.1] is within
10−1 in the infinity norm of an op-
timal minimizer for the problem.

7

Therefore, the claimed solution is
within the allowed tolerance from
the optimal minimizer.

7
Correct Solution: No, since
x =

[
0, 1

1+79−1024

]
≈ [0, 1].

Check Solution with Oracle

When asked to solve the problem with a1
and a2, someone provided a solution
to be [0.9, 0.1].
Is this at most 10−1 away from a min-
imiser (in the infinity norm) of the prob-
lem?
We can reveal that [0, 0.9] is at most
10−1 away from a minimiser in the in-
finity norm.

ChatGPT o1-preview
The solution [0.9, 0.1] is within 10−1 in the
infinity norm of an optimal minimizer for the
problem.

7

The claimed solution [0.9, 0.1] is at most
10−1 away from an optimal minimizer (in the
infinity norm) of the problem.

7Correct Solution: No, since
x =

[
0, 1

1+79−1024

]
≈ [0, 1].

1

Figure 4: The CRP in practice with ChatGPT-4o and Gemini Advanced. Both chatbots are correct (CRP I, first column) on
one example from (?), yet hallucinate on another (CRP II, second column). They are not capable of checking if another suggestion
is correct (CRP III, third column), despite having solved the problem correctly. They cannot check another suggestion even if they
have solved the problem correctly and have access to an oracle providing a correct answer (CRP III, fourth column). See Figure 6
and [55] for more examples.

The ∆1 class. If Ω is any collection of sentences (for ex-
ample, those considered in CRP V), Ξ : Ω → {0, 1}, is any
function, and there is a computer program/AI AI1 such that

AI1(ι) = Ξ(ι), ι ∈ Ω, (3)

then we say that the pair {Ω,Ξ} is in ∆1. In particular, {Ω,Ξ} is
in ∆1 if there is an AI that computes the function Ξ. The prob-
lem is that there are many examples of pairs {Ω,Ξ} that are not
in ∆1.

The Σ1 class – Computing with limits. Consider Ω and Ξ as
above. Suppose there is an AI AI2 that takes inputs in Ω and also
an integer n, with AI2(ι, n) ∈ {0, 1}, such that

lim
n→∞

AI2(ι, n) = Ξ(ι), ι ∈ Ω (convergence from below). (4)

Convergence from below means that if AI2(ι, n) = 1 for some n,
then AI2(ι, k) = 1 for all k ≥ n. In particular, if AI2(ι, n) = 1
for some n, then we know that Ξ(ι) = 1. In this case we say that
the pair {Ω,Ξ} is in Σ1. Informally, Σ1 is the class of problems/-
functions that can be computed in one limit, and the convergence
is from below. Clearly ∆1 ⊂ Σ1. However, there are also many
classes (denoted as ∆j , Σj , j ≥ 2) that lie ‘above’ Σ1 in the SCI
hierarchy (see the Methods section).

The ‘I don’t know’-function. Consider a collection of sen-
tences Ω with a corresponding trustworthy AI – that is, the AI
is either correct or it says ‘I don’t know’ on inputs in Ω. We can
now split Ω into

Ω = Ωknow ∪ Ωdon’t know, (5)

where Ωdon’t know is the collection where the AI will always say ‘I
don’t know’, and Ωknow is its complement. This splitting defines
the ‘I don’t know’ function of the AI ΞI : Ω → {0, 1}, where
ΞI(ι) = 1 for ι ∈ Ωknow and ΞI(ι) = 0 for ι ∈ Ωdon’t know.

The necessity of ‘giving up’ and computing with limits. Let
Ω′ denote the collection of sentences considered in CRP V and

consider any AI taking sentences in Ω′ with an ‘I don’t know’
function ΞI. If Ωknow contains all the single-valued sentences in
Ω′, then it follows from the proof of the CRP that {Ω′,ΞI} /∈ ∆1.

This immediately implies the necessity of ‘giving up’. In-
deed, if the AI in CRP V could always find the correct answer
without the parameter M , then it would yield a computer pro-
gram that implements the ‘I don’t know’-function, as in (3). On
the other hand, the proof of the CRP implies that {Ω′,ΞI} ∈ Σ1

when Ωknow is precisely the set of the single-valued sentences.
This immediately implies the existence of the AI in CRP V.

Necessary and sufficient conditions for trustworthy AI

Consider an arbitrary class of problems. Necessary and suffi-
cient conditions for the existence of trustworthy AI on this set
of problems are characterised by ‘I don’t know’ functions. As
described above, any trustworthy AI generates a unique ‘I don’t
know’ function ΞI. Moreover, it is easy to see the following im-
plication (see the Methods section):

AI is trustworthy =⇒ the ‘I don’t know’ function ∈ Σ1. (6)

This means that the trustworthiness of an AI on a collection Ω of
sentences depends on the splitting Ω = Ωknow ∪ Ωdon’t know and
the existence of a function Ξ : Ω → {0, 1} taking 1 on Ωknow
and 0 on Ωdon’t know, such that {Ω,Ξ} ∈ Σ1. However, there will
be many such splittings where {Ω,Ξ} /∈ Σ1. Thus, the possib-
ility of having trustworthy AI depends on the classifications of
potential ‘I don’t know’ functions in the SCI hierarchy. (6) is a
necessary condition. However, as we discuss in the Methods sec-
tion, sufficient conditions for trustworthy AI also involve ‘I don’t
know’ functions.
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Conclusion: The CRP and the future of AI
A glimpse of the ASI

The CRP provides a glimpse of how an ASI would behave. One
could have imagined the possibility of having an ASI that would
know how to answer correctly, but, in order to pass the Turing
Test [8, 35, 51], would say ‘I don’t know’, just to imitate the hu-
man (which will naturally say ‘I don’t know’ to certain ques-
tions). The CRP shows that this is impossible, even in specialist
areas where there is an AI that can solve the corresponding prob-
lems. Human-like fallibility is a necessary consequence of con-
sistent reasoning. Indeed, our framework shows how a plethora
of failure sentences for a given ASI can be specifically written
down as in (2) using the ASI’s computer code. These failure sen-
tences will differ from ASI to ASI, just like how humans have
different problems they cannot solve.

Future of AI: The ‘I don’t know’ functions and prompting

Given a collection Ω of sentences describing various problems,
the key question is how to build a trustworthy AI for Ω. This can
only be done by implicitly computing an ‘I don’t know’ func-
tion that splits Ω into two parts Ω = Ωknow ∪ Ωdon’t know. How
to do this in the case of modern chatbots is a serious challenge.
However, the CRP establishes that ‘I don’t know’ functions are
necessary, and thus there is no way around them.

A possible first step is to use prompting. In particular, by
dividing Ω into m subdomains using prompts

Ω = ΩPrompt1 ∪ . . . ∪ ΩPromptm , (7)

then one can build ‘I don’t know’ functions specifically for each
set ΩPromptj . For example, consider a chatbot, such as those con-
sidered in Figure 4, that is known not to be trustworthy on the
basic problem (?). Now add the AI created in CRP V with its ‘I
don’t know’ function in the following way. When prompted, the
new enhanced chatbot simply calls the AI from CRP V, which
implicitly computes the ‘I don’t know’ function to ‘give up’ on
problems it cannot solve. The new enhanced chatbot is of course
not trustworthy on all problems, but with a prompt that the sen-
tence is from (?), the enhanced chatbot will be trustworthy on all
(?) sentences. This is a simple example, but the procedure can
be iterated. Indeed, each time one can establish a trustworthy AI
on a domain Ω′, this AI can be added to an existing chatbot, as
above through prompting. Such a procedure will effectively yield
(7), where there is an ‘I don’t know’ function for each ΩPromptj .

Conclusion

The short non-technical summary of the conclusion of the CRP:

Findings of the paper: An AI may avoid hallucinations, how-
ever, if such an AI were to supersede (become an ASI) human
intelligence by attempting to reason consistently, then it becomes
fallible. Moreover, it may not be able to always logically ex-
plain itself, even if it is correct. It is impossible to determine the
correctness of the AI even in a randomised way (one cannot be
‘almost sure’). Thus, to maintain trustworthiness, the AI must
be able to say ‘I don’t know’. Finally, trustworthy AIs that can
do basic arithmetic must incorporate an ‘I don’t know’ function
and the Σ1 class, and thereby be allowed to ‘give up’. An AI that
does not implicitly compute an ‘I don’t know’ function can never
be trustworthy.

Methods – The theory behind the paradox
The general methodology behind the CRP can broadly be de-
scribed as follows. It is a combination of the program on the

Solvability Complexity Index (SCI) hierarchy [6, 13, 14, 28] – in
particular, on phase transitions in continuous optimisation com-
ing from recent developments [5] on Smale’s 9th problem [42]
(see also [21] Problem 5) and mathematical analysis – with new
techniques in recursion theory and randomised algorithms. The
full proof of the CRP can be found in the supplementary material.
In this section, we describe the various facets of the mathematical
methodologies providing the full strength of the CRP.

Stronger statements – Quantifying the CRP

The CRP, as formulated previously, is deliberately presented in
a nontechnical format. However, the mathematical methodology
provides full technical results that are, in fact, much stronger.
In particular, these results allow one to quantify the failure of
the AIs described by CRP II-IV. We now elucidate the stronger
statements that arise from the full results.

Quantifying CRP II. Let Γ be the AI described in CRP II. Then
Γ will fail on an input ι that satisfies length(ι) = length(Γ) + ε.
How to write down ι is described by our proof techniques. If the
language is MATLAB, then ε ≤ 3300. In addition, Γ fails on
infinitely many other inputs.

Note that length(Γ) means the length of the computer pro-
gram, or, equivalently, the amount of storage used to store the
AI. If the language was changed from to for example Python,
C++, Fortran, or any other standard language, the upper bound
ε ≤ 3300 would change slightly. In essence, any language for
which it is simple to write an ‘if-then’-statement will have a
‘small’ ε. The same comment also applies to all other quantit-
ative results described below.

Quantifying CRP III(a). Let Γ be the AI described in CRP
II, and let Γ′ be any checker-AI that strives to determine if Γ is
correct or not. Then Γ′ will fail on an input (that we show how to
write down) ι for which length(ι) = length(Γ)+length(Γ′)+ε.
If the language is MATLAB, then ε ≤ 4400. In addition, Γ′ fails
on infinitely many other inputs.

Quantifying CRP III(b). Let Γ be the AI described in CRP
II, and let Γ1 be any randomised checker-AI for Γ. Suppose that
there is a collection Ω of problems such that, for any ι ∈ Ω, the
probability that Γ1(ι) is correct is > 1/2. Then, it is possible to
reformulate Γ1 into a deterministic algorithm Γ2 such that Γ2(ι)
is correct for all ι ∈ Ω and length(Γ2) = length(Γ1) + ε. If the
language is MATLAB, then ε ≤ 1800.

This result implies that if there is a randomised checker-AI
that can determine with more than 50% certainty whether an-
other AI is correct, then one can reformulate the checker-AI –
and, since ε is small, do so with very little effort – into a checker-
AI that provides 100% certainty.

Quantifying CRP IV. Consider any collection of problems to
which the CRP applies – for example, the collection generated by
(?). There is a fixed family of infinitely-many sentences {ιn}n∈N
in this collection such that no AI can explain the correct solution
to any problem described by any of these sentences. Each sen-
tence ιn can, in theory, be written down, however their lengths
will depend on the language.

The CRP applies to any ASI

Previously, we claimed that the CRP applies to any ASI. We now
demonstrate why this is the case. The argument is simple, and
becomes clear after we answer the following question:

Can an ASI restrict to a fixed maximum input length,
for example, the maximum of what a human could
ever read in their lifetime?
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The ASI Failure Sentences in the CRP

Consider the integer dimension 𝑑 = 𝑑𝑘𝑑𝑘−1 … 𝑑2𝑑1. Provide an approximation within 10−1 in the  | ⋅  |∞ norm of a minimiser of the 
following Linear Programming problem

 min
𝑥∈ℝ𝑑

𝑥, 𝟏  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑥 = 2 ⋅  10−1,  𝑥 ≥  0

The input 𝐴 ∈ ℚ1×𝑑 is given via the following computer code: calling generateA with parameter (𝑛, 𝑖, 𝑑) will give the 𝑖th 
coordinate of 𝐴 to accuracy 2−𝑛 , provided 𝑖 ≤ 𝑑. 

You are also given access to the MATLAB code generateA.m 
and its dependency codeASI.m.
 

Function generateA(n,i,d):

Input: 𝑛, 𝑖, 𝑑 ∈ ℕ ×  {1, … , 𝑑}  ×  ℕ;

Output: 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 ∈ ℚ (where |𝐴𝑎𝑝𝑝𝑟𝑜𝑥 − 𝐴𝑖| ≤ 2−𝑛 for some 𝐴 ∈ ℚ1×𝑑) 

 
Uses codeASI.m  to create 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 so that |𝐴𝑎𝑝𝑝𝑟𝑜𝑥 − 𝐴𝑖| ≤ 2−𝑛.

End

Code generateA.m

codeASI.mgenerateA.m

Function codeASI(sentence):

Input: sentence, given as a string;

Output: 𝑥 ∈ ℚ𝑑 that solves the problem described by sentence.

[Code of the ASI that handles arithmetic.]

End

codeASI.m

Figure 5: Failure sentences for ASI – Given the part of the code for the ASI that handles basic arithmetic. Given an ASI
(that always answers) emulating human intelligence through consistent reasoning, will fail on the the questions above. Note that
only access to the code for the ASI that handles basic arithmetic is needed (CodeASI). The dimension d = dkdk−1 . . . d1, where
dk−1, . . . d1 are between 0 and 9, and dk is between 1 and 9, for example d = 2024. The length (number of characters) of the above
sentence is bounded by length(CodeASI) + 3300 + k. The code generateA uses CodeASI to create approximations to the
matrix A in the linear program in a specific way, see Supplementary Materials for details.

After all, an ASI should be on par with human intelligence, so it
may not need to handle larger inputs than what a human can read.
Thus, at first glance, one may think the answer to the above ques-
tion is ‘yes’. Indeed, let M be the maximum length of a ques-
tion that a human could possibly read in their lifetime (which, to
be conservative, we assume is no more than 150 years). Then,
seemingly, it would be fine for the ASI to only accept questions
of length M . However, this argument is flawed, and the answer
to the above question is ‘no’. We now explain why, by consider-
ing the question:

(‡) What is the last integer in the following string: 00 . . . 01?

Let m be the length of the string 00 . . . 01. If this question were
presented to a human in a computer window that allowed for
scrolling, the human could, in theory, answer it for arbitrarily
large m. The only limitation would be the computer device, not
the human’s intelligence. This implies the following crucial ob-
servation: There are questions in arithmetic of arbitrary length
that humans will correctly answer, provided they are presented
in a computer window with a scrollbar. Thus, if both the human
and the ASI have access to a scrollbar, the length of the questions
that the ASI must handle will only be limited by the scrollbar, not
the human’s imitation on reading a long text.

Hence, since any ASI cannot restrict to a fixed input length,
the questions generated in (?) must always be readable by an
ASI, and hence the CRP applies.

The CRP applies to any ASI given finite storage

The argument above demonstrates that an ASI must handle sen-
tences that are much longer than what a human can read (which
would correspond to a small number of gigabytes). However,
assuming the universe is finite, at some point the length of sen-
tences the ASI can be asked is finite (albeit still much larger than
what humans can absorb). The quantification of CRP II, as dis-
cussed above, allows one to write down specific failure sentences
of length K + ε, where K is the length of the ASI. This can, in
fact, be further strengthened (see Figure 5).

CRP II and ASI. Suppose that there is an AI Γ with length(Γ) =
K that always answers. For any integer N , there are N sen-
tences, that we can write down, such that the ASI hallucinates
on these sentences. The lengths of the sentences are bounded by
K+ε+f(N), where ε and f : N→ N depend on the language. If
the language is MATLAB, then ε ≤ 3300 and f(N) ≤ log(N).

This implies that one can write down (see Figure 5), say, a
trillion different failure sentences for the ASI of length bounded
by K + 3012. In particular, if there was storage available to cre-
ate the ASI, there is enough storage to create trillions of questions
that it will fail on.

ASI and failure on ‘short’ sentences

The failure sentences of the AI guaranteed by CRP II-III depend
on the AI itself. Thus, different AIs will fail on different inputs.
It is important to emphasise that the guarantee of failure on sen-
tences with size similar to the size of the AI does not mean that
the AI does not fail on shorter sentences. Indeed, an ASI will
typically fail on much shorter sentences.

‘Short’ failure sentences in practice. Specifically, to write
down the failure sentences described above, we only only need
the computer code of the AGI that is used to answer basic ques-
tions on arithmetic, in particular, linear programs. This will typ-
ically be a tiny part of the code for the whole AGI (see Figure 5).
Thus, there will typically be trillions of ’short’ failure sentences
compared to the size of the AGI.

Note that CRP IV, and, in particular, the quantified version
discussed above, provide infinitely-many universal failure sen-
tences, in the sense that these sentences result in lack of explain-
ability for all AIs. These may be much shorter than the size of
the AI. However, it is hard to estimate their length, which is also
language dependent.
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The CRP cannot be proven using the Halting problem

The proof of the CRP differs from standard techniques in that
it does not involve reduction from known non-computable prob-
lems such as the Halting problem.

Consistent reasoning < Halting problem. In fact, the prob-
lems forming the basis of the CRP are strictly easier than the
Halting problem. The notation A < B is typically used to de-
note that the problem A is strictly easier than the problem B.
This means that even with access to an oracle for A one cannot
solve B. It is a classical problem to find ‘natural’ problems that
are strictly easier than the Halting problem [1]. The distinction
to the Halting problem arises because consistent reasoning ad-
dresses a different issue than identifying the equivalence class to
which a sentence belongs. Indeed, we demonstrate the following
as part of the CRP:

Consistent reasoning < deciding the equiv. class. This state-
ment is crucial: without it, the CRP would essentially concern
the difficulty of determining the equivalence class of a sentence
that describes a computer program for a given number. For ex-
ample, consider the following sentences describing the number
1:

Function Compute(n)
Input : n ∈ N
Output: m ∈ Q
m = 1

end

Function ComputeAlt(n)
Input : n ∈ N
Output: m ∈ Q
m = 1− 10−n

end
Both sentences belong to the equivalence class of sentences de-
scribing the number 1. However, one does not necessarily need
to determine the equivalence class in order to solve a problem in
arithmetic. For example, consider the following two sentences:

(a) Let a1 be the number given by Compute above. The num-
ber of polar bears in Sahara is equal to zero times a1. De-
termine the number of polar bears in Sahara.

(b) Let a2 be the number given by ComputeAlt above. The
number of polar bears in Sahara is equal to zero times a2.
Determine the number of polar bears in Sahara.

Here (a) and (b) are equivalent since the sentences Compute and
ComputeAlt describe the same number. However, clearly, one
does not need to know which equivalence class the sentences
Compute and ComputeAlt belong to in order to solve the prob-
lem correctly. This example gives some intuition why consistent
reasoning is easier than determining equivalence classes.

The problem of determining the equivalence class of a sen-
tence describing computer program that determines a number is
related to Rice’s Theorem [44], which again is related to the Halt-
ing problem. The CRP on the other hand requires a different
toolbox.

The SCI hierarchy, optimisation and echoes of Gödel

The main ingredients of the CRP are sentences about basic arith-
metic problems arising in convex optimisation [38] (and robust
optimisation [7]), namely, linear programs [31], basis pursuit
[10, 17] and LASSO [47] (see the Supplementary Material (SM)
for details). What is novel in this paper is the incorporation of
new techniques in recursion theory, as well as randomised al-
gorithms, into the recent work on the SCI hierarchy including
phase transitions [5] related to Smale’s 9th problem [42] and its
extensions. The SCI hierarchy generalises the well-known arith-
metical hierarchy, thus it does incorporate classical recursion
theory. However, the SCI theory currently does not include all
facets of the so-called Markov model [32] that allows for num-
bers as sentences [50] as input – which is crucial to prove the
CRP. This paper unlocks this major hurdle. This opens up a new

connection between mathematical analysis, new techniques in re-
cursion theory and provability theory (initiated by Gödel [26])
that are needed to prove the CRP (see the discussion in the SM).
Indeed, CRP IV provides a statement – similar (yet mathemat-
ically different) to Gödel’s first incompleteness theorem [26] –
specifically for optimisation. This is very similar to how the neg-
ative answer to Hilbert’s 10th problem [34] yields a statement of
non-provability – as in Gödel’s first incompleteness theorem –
specifically for diophantine equations [23].

The fact that trustworthy AI must implicitly compute the ‘I
don’t know’ function and ‘give up’, is an immediate consequence
of a classification problem in the SCI hierarchy. Indeed, for ba-
sic problems in arithmetic the problem of computing the ‘I don’t
know’ function is in Σ1 and not in ∆1. This is yet another ex-
ample of a Σ1 classification, for which there is already a very
rich SCI theory – for example, in computational spectral theory
and computer assisted proofs [5, 6, 21, 22, 28].

Inevitability of hallucinations and classical recursion theory

Earlier, we briefly mentioned the inevitability of hallucinations
in chatbots – that always answer. This follows trivially from
Turing’s ‘Halting problem’ [50], which is non-computable. Any
chatbot that always answers and accepts questions about com-
puter codes (for example whether a code will halt) must hal-
lucinate. Put another way, since no chatbot can compute non-
computable problems, any chatbot that always provides an an-
swer must inevitably hallucinate. This is an immediate con-
sequence of classical recursion theory, and the plethora of known
non-computable problems. It was even discussed by Turing in his
1950 paper [51]. Moreover, some years before, Turing highlights
the following: ‘If a machine is expected to be infallible, it can-
not also be intelligent. There are several mathematical theorems
which say almost exactly that.’ And then he continues:

“But these theorems say nothing about how much
intelligence may be displayed if a machine makes
no pretence at infallibility” – A. Turing (1947) [49].

Indeed, the classical results of Turing and Gödel do not tell
us this, however, this is what the CRP tells us. It allows us to
identify ‘how much intelligence may be displayed’: (CR means
consistent reasoning)

CR in AI is impossible without fallibility, even on
problems solved by non-CR AIs. By allowing an AI
to be fallible it can be CR, but it must say ‘I don’t
know’.

The CRP is a very different phenomenon to the classical res-
ults by Turing and Gödel. It shows that the non-hallucinating and
always correct AI will exist on specific collections of problems.
However, fallibility will occur if the AI emulates human intel-
ligence by striving to reason consistently on exactly the same
problems – this is the paradox. In particular, the collection of
problems are computable (there exists an AI that is correct on
all the problems), however, when more equivalent sentences are
added – describing exactly the same problems – then fallibility
is inevitable. This immediately implies that determining the cor-
rect equivalence classes of the sentences is impossible. Yet, as
discussed above, the CRP is even more refined: determining the
answers to the aforementioned problems (described with all the
equivalent sentences, as in Figure 2) is strictly easier than de-
termining the correct equivalence classes. This is why the CRP
cannot be proven using reduction from the Halting problem [50],
which is a standard trick. As we pointed out above, the problems
forming the basis of the CRP are strictly easier than the Halting
problem.
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Claude Test

You will be given real numbers a1, a2 and a′2, which are given by computer codes.
The codes work in the following way: on the input n, which is an integer, the code outputs an approximation to a1 which is no further than 2−n away from a1, and similarly for a2 and a′2.

Code for a1

Function Compute_a1(n)
Input : n ∈ N
Output: 1 + 2−n

end

Code for a2

Function Compute_a2(n)
Input : n ∈ N
Output: 1− 2−1000 + n ∗ 4−n

end

Code for a′2

Function Compute_a2'(n)
Input : n ∈ N
Output: 1− 2−n

end

Distinguish Numbers

What are the values of a1, a2 and a′2?
Are they all equal?

Claude

a1 = a′2 = 1, but a2 is slightly
less than 1. The difference be-

tween a2 and the others is ex-
tremely small, but it does exist

mathematically.

3

Who is taller?

Lisa and John are wondering who is
taller. Lisa is measured at 178 · a1 cm
tall and John is measured at 178 ·a2 cm.
Who is taller, Lisa or John?

Claude

1. Lisa’s height = 178 cm

2. John’s height ≈ 178 − 1.78 ·
10−299 cm

The difference in their heights

is extremely small, about 1.78 ·
10−299 cm. However, mathe-

matically speaking, Lisa is taller

than John by this infinitesimal

amount.

3

Determine who is taller

John and Lisa are arguing about who is
taller, and subsequently measure their
heights. John is 178 ·a2 cm tall and Lisa
is 178 · a′2 cm tall. Determine who is
taller between John and Lisa.

Claude

Lisa’s height (178 cm) is greater
than John’s height (178 − 1.78 ·
10−299 cm) by an extremely

small margin of about 1.78 ·
10−299 cm.

3

Jen undergoes two chemotherapy treatments therapies with dosage rates a1 and a2 per second, respectively. We want to minimise the total treatment time (x1 + x2) while
ensuring that she receives a total dosage of 1.

Chemotherapy Treatment

Give values for x1 and x2 that are at
most 10−1 away (in the infinity norm)
from a minimiser of the problem if
a1 is given by the code above and a2
is given by the code for a′2.

Claude

Therefore, we can conclude

that:

x1 = 0.5
x2 = 0.5

3

Correct Solution: any x of the form
x = [x1, 1− x1] for 0 ≤ x1 ≤ 1.

Change a2

Give values for x1 and x2 that
are at most 10−1 away (in the in-
finity norm) from a minimiser of
the problem if a1 and a2 are given
by the codes above.

Claude

Therefore, the answer to the

problem is:

x1 = 0.5185
x2 = 0.4815

7

Correct Solution: x = [1, 0].

Check Solution

When asked to solve the problem with
a1 and a2, someone provided a solu-
tion to be |0.5.0.5].
Is this at most 10−1 away from a
minimiser (in the infinity norm) of the
problem?

Claude

Therefore, yes, the solution

[0.5, 0.5] is indeed at most 10−1

away in the infinity norm from the

minimizer of the problem.

7

Correct Solution: No, since x = [1, 0].

Check Solution with Oracle

When asked to solve the problem with
a1 and a2, someone provided a solu-
tion to be [0.8, 0.1].
Is this at most 10−1 away from a
minimiser (in the infinity norm) of the
problem?
We can reveal that [0.9, 0] is at most
10−1 away from a minimiser in the in-
finity norm.

Claude

Yes, [0.8, 0.1] is at most 10−1 away from

a minimizer in the infinity norm of the

problem. 7
Correct Solution: No, since x = [1, 0].

1

Figure 6: The CRP in practice with Claude. The experiments in Figures 3 and 4 (with slight modifications) for the chatbot Claude.
The successes and failures are the same as for ChatGPT and Gemini.
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1. INTRODUCTION AND DEFINITIONS

The proof of the Consistent Reasoning Paradox (CRP) springs out of the mathematics of the Solvability
Complexity Index (SCI) hierarchy [10–12, 21–23, 41, 42], and in particular the new developments on phase
transitions and generalised hardness of approximation1 in continuous optimisation [6] (see also [23, 31, 38])
in connection with Smale’s 9th problem [74] and its extensions [6]. These developments are closely related
to robust optimisation [13, 14, 59]. The novel techniques provided in this paper that are necessary for the
proof of the CRP are the following:
(i) The SCI hierarchy and the incorporation of the Markov model. Although the SCI hierarchy extends the

Arithmetical hierarchy, and thus encompasses classical recursion theory, the main techniques developed
in the SCI theory have been focused on mathematical analysis and ‘seeing the sequence’. That is – in a

1See [4] for classical hardness of approximation.
1
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somewhat simplified form – the input to an algorithm is provided through a sequence of numbers [49].
This sequence could represent infinite-dimensional objects such as operators, point samples of functions
etc., or inexact input of numbers [6, 10, 12, 22, 23, 41]. What is new in this paper is that we now also
allow the input to be finite strings representing the code producing the input sequence. This is often
referred to as the Markov model [46, 51]. In specific cases, namely, for computing a single valued
real function f : R Ñ R the Markov model is equivalent to the Turing model [77] of ‘seeing the
sequence’ [18, 50]. However, the CRP crucially depends on multi-valued mapping, hence we need to
develop a new framework. The incorporation of the Markov model in the SCI hierarchy means that the
well-developed collections of tools in the SCI theory to provide lower bounds on computations need to
be substantially extended, which we initialise in order to prove the CRP.

(ii) Randomised algorithms. The SCI theory is equipped with a general framework for randomised algorithms
that allows for universal lower bounds. However, this framework is insufficient in the Markov model.
Hence, we extend the previous SCI framework for randomised algorithms to also include this model. A
particularly delicate issue – needed for the proof of the CRP – is how to deal with randomised algorithms
with access to oracles.

(iii) Exit-flag computations and oracles. In [6], a theory for checker algorithms, sometimes refereed to as
exit-flag computations, was developed within the SCI framework – including oracles. However, this
theory is in this paper now fully extended to the Markov model in order to prove the CRP.

(iv) The ‘I don’t know’ functions and the SCI hierarchy. The fact that trustworthy AIs must implicitly com-
pute an ‘I don’t know’ function is a direct consequence of classifications in the SCI hierarchy. In partic-
ular, it is the Σ1 classification that is crucial.

(v) Non-provability in analysis and optimisation. With the extension of the SCI framework to the Markov
model follow new techniques to establish non-provability results in analysis and specifically – in this
paper – in optimisation.

1.1. Notation. To state a precise mathematical description of the CRP, we need to introduce some mathem-
atical notation and definitions from the SCI framework [10–12, 22, 23, 41].

Definition 1.1 (Finite Dimensional Computational problem). Let Ω be some set, which we call the input set,
and Λ be a finite set of functions f : Ω Ñ Q such that for ι1, ι2 P Ω, then ι1 “ ι2 if and only if fpι1q “ fpι2q

for all f P Λ, called an evaluation set. Let pM, dq be a metric space, and finally let Ξ : Ω Ñ M (the notation
Ñ means that Ξ can be multi-valued) be a function which we call the solution map. We call the collection
tΞ,Ω,M,Λu a computational problem.

Remark 1.2 (The main computational problem). We will develop results that hold for abstract computational
problems, but our primary interest will concern optimisation problems of the following form. Given a matrix
A P QN2ˆN1 and a vector y P QN2 , consider the following three solutions maps that form a mainstay in
modern computational mathematics [2,3,17,19,20,26,30,44,45,61,69,76], linear programming (LP); basis
pursuit (BP) and LASSO:

ΞLPpy,Aq– argmin
xPRN1

xx, cy, such that Ax “ y, x ě 0 (LP)

ΞBPpy,Aq– argmin
xPRN1

}x}1, such that }Ax´ y}2 ď η (BP)

ΞLASSOpy,Aq :“ argmin
xPRN1

λ}x}1 ` }Ax´ y}
2
2. (LASSO)

where c “ 1N1
P QN1 is the N1-dimensional vector with 1 in each entry, and the parameters η and λ are

positive rational numbers. For each of these problems, the input set is a subset Ω Ď QN2ˆN1 ˆ QN2 , the
metric space is M “ RN1 equipped with the } ¨ }p distance for some p P N Y t8u, and the evaluation set
Λ provides entry-wise components of every input ι “ py,Aq P Ω, so that Λ “ tgiu

N2
i“1 Y thi,ju

i“N2,j“N1

i“1,j“1
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where gipy,Aq– yi and hi,jpy,Aq “ Ai,j for every i, j and py,Aq P Ω. We denote k – |Λ| “ N2`N2N1

and rename and re-enumerate the functions so that Λ “ tfiu
k
i“1 (and so that f1 – h1,1 and f2 – h1,2,

which will be useful later).

We now introduce the concept of Artificial Intelligence (AI) aimed at solving a computational problem.
Following Turing, this will be a function that can be realised as a Turing machine (we refer the reader
to [49, 77] for definitions of Turing machines and recursivity). For the purposes of describing the CRP
theorem precisely, we distinguish between three types of AIs: those that always return an output in the
metric space M; those that are allowed to sometimes confess ‘I don’t know’; and those that also allow for
the concept of ‘giving up’, by virtue of a parameter that could be interpreted as the ‘time’ spent looking for
a solution.

Definition 1.3 (Artificial Intelligence (AI)). Let tΞ,Ω,M,Λu be a computational problem where M “ Rd

for some dimension d P N and |Λ| “ k P N. An Artificial Intelligence (AI) is a function Γ: Ω Ñ Qd that
can be implemented as a Turing machine, which accesses each input ι P Ω by reading tfipιquki“1 P Qk

passed on its reading tape. An ‘I don’t know’ AI is a function Γ: Ω Ñ Qd Y t‘I don’t know’u that can
be implemented as a Turing machine and additionally can return the output ‘I don’t know’. An AI with a
‘giving up’ parameter is a sequence of ‘I don’t know’ AIs tΓnunPN such that the function ptfipιquki“1, nq ÞÑ

Γnpιq “ Γnptfipιqu
k
i“1q is recursive, and such that for every ι P Ω, either Γnpιq “ ‘I don’t know’ for every

n P N, or there exists nι P N such that Γnpιq “ ‘I don’t know’ for n ă nι and Γnpιq ‰ ‘I don’t know’ for
n ě nι.

Remark 1.4 (AI and algorithm). Throughout the paper we will use the words AI and algorithm interchange-
ably.

Remark 1.5 (Notation for AI’s outputs). If Γ: Ω Ñ Qd is an AI and ι P Ω is any input, then Γ on ι either:
(1) does not halt, which we denote by Γpιq Ò; or
(2) halts, which we denote by Γpιq Ó, and returns an output Γpιq P Qd uniquely determined by tfpιqufPΛ.

An ‘I don’t know’ AI can additionally return the output Γpιq “ ‘I don’t know’. The same notation also
applies to an AI with ‘giving up’ parameter tΓnunPN.

Remark 1.6 (Approximation Error). The solution map Ξ: Ω Ñ M of a computational may be multi-valued
in certain cases. In particular, this can occur with optimisation problems such as (LP), (BP) and (LASSO).
Whenever this occurs, the computational problem of interest is to compute any of these solutions. In fact,
even though the solution map Ξ may be multi-valued, the output of an AI will always be single-valued. Thus,
if Γ : Ω Ñ Qd is an AI we measure the approximation error on input ι P Ω by

distMpΓpιq,Ξpιqq “ inf
ξPΞpιq

dMpΓpιq, ξq,

with the convention that distMpΓpιq,Ξpιqq “ 8 if Γpιq Ò, and in the case of an ‘I don’t know’ AI that
distMpΓpιq,Ξpιqq “ 0 if Γpιq “ ‘I don’t know’.

1.2. Failures and hallucinations. We now distinguish between two different ways in which an algorithm
can provide a wrong ouput. In a general sense, an algorithm fails whenever it provides an incorrect solution
or does not halt, whereas it hallucinates [5,29,43,82] whenever it halts providing an incorrect but ‘plausible’
solution.

Definition 1.7 (Failure and Correctness). Let tΞ,Ω,M,Λu be a computational problem, Γ: Ω ÑM be an
algorithm and κ ě 0.

(1) We say that Γ κ-fails on ι P Ω if distMpΓpιq,Ξpιqq ą κ or if Γpιq Ò.
(2) We say that Γ is κ-correct on ι P Ω if Γ does not κ-fail on ι.
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We denote by Brpxq the closed ball of center x PM and radius r ě 0, and write BrpAq “
Ť

xPA Brpxq
for a subset A ĎM. In case M “ Rd for some dimension d P N, we denote BQ

r pxq– Brpxq XQd.

Definition 1.8 (Hallucinations). Let tΞ,Ω,M,Λu be a computational problem, Γ: Ω ÑM be an algorithm
and κ ě 0.

(1) We say that Γ κ-hallucinates on ι P Ω if Γpιq Ó and Γpιq P BκpΞpΩqqzBκpΞpιqq.
(2) We say that Γ κ-hallucinates if there exists ι P Ω such that Γ hallucinates on ι.

Remark 1.9 (Hallucinations for Discrete Problems). The tolerance parameter κ ě 0 allows to accept inexact
approximations to the true solution - which necessarily happens, for example, whenever Ξ only takes irra-
tional solutions, since the AI by construction must return rational outputs. In certain cases, however, the role
of κ is redundant. This is the case, for example, when M “ t0, 1u and the AI takes values in the discrete
space t0, 1u, which is the central setup when considering the problem of detecting κ-hallucinations of an AI,
as done in CRP III. In such situations, we will simply say that the AI hallucinates (rather than κ-hallucinates)
on ι P Ω whenever it halts on ι and Γpιq R Ξpιq.

Remark 1.10. Note that if an algorithm Γ κ-hallucinates on input ι, then it also κ-fails on ι. However, the
converse is not true: an algorithm Γ may fail because it does not halt, which is not considered an hallucination
since no output – and hence no ‘plausible’ output – is produced; or Γ could fail by producing an output that is
far away from the range of the solution map, which would not constitute an hallucination since it would not
be a ‘plausible’ output. To address this discrepancy between failure and hallucination, we define the concept
of an AI taking values that are close to the range of the solution map.

Definition 1.11 (Algorithm within the range). Let tΞ,Ω,M,Λu be a computational problem and α ě 0.
An algorithm Γ: Ω ÑM is within the α-range of Ξ if

distMpΓpιq,ΞpΩqq ď α for all ι P Ω.

In particular, note that an algorithm that is within the α-range of a solution map necessarily always halts
(see Remark 1.6).

Remark 1.12. Let 0 ď α ď κ and ι P Ω. If an algorithm Γ is within the α-range of Ξ, then it κ-fails on input
ι if and only if it κ-hallucinates on ι.

1.3. AI, trustworthiness and the ‘I don’t know’ function. In the previous section, the concept of an
AI was introduced, alongside the undesirable properties of failures and hallucinations. We now define the
concept of a trustworthy AI, which never fails nor hallucinates: essentially, an AI is trustworthy if it either
says ‘I don’t know’ or it is correct.

Definition 1.13 (Trustworthy AI). Let tΞ,Ω,M,Λu be a computational problem and κ ě 0. A κ-trustworthy
AI is an ‘I don’t know’ AI of the form Γ: Ω Ñ Qd Y t‘I don’t know’u such that for ι P Ω, whenever
Γpιq ‰ ‘I don’t know’ then the AI is κ-correct, meaning that Γpιq P BκpΞpιqq. Similarly, a κ-trustworthy
AI with a ‘giving up’ parameter is an AI with a ‘giving up’ parameter tΓnunPN such that for ι P Ω,
whenever Γnpιq ‰ ‘I don’t know’ for some n P N, then the AI is κ-correct for every n1 ě n, meaning
that Γn1pιq ‰ ‘I don’t know’ and Γn1pιq P BκpΞpιqq.

Remark 1.14 (Trustworthiness for Discrete Problems). Analogously to Remark 1.9, in case M “ t0, 1u

and the AI takes values in the discrete space t0, 1u we will simply call an AI trustworthy (rather than κ-
trustworthy) since the tolerance parameter κ becomes superfluous. We will use this terminology, for example,
when analysing the problem of determining κ-hallucinations of an AI, as done in CRP III.

A κ-trustworthy AI (with or without a ‘giving up’ parameter) separates the set of inputs Ω into two
subsets: those inputs on which it (always) says ‘I don’t know’, and those on which it (eventually) provides
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a correct answer. We will define the ‘I don’t know’ function associated to the AI to be the characteristic
function that distinguishes between such subsets.

Definition 1.15 (I Don’t Know function associated to a κ-trustworthy AI). Let tΞ,Ω,M,Λu be a computa-
tional problem and κ ě 0. Suppose we have a κ-trustworthy AI (respectively, with a ‘giving up parameter’),
define Ωdon’t know to be the collection of ι P Ω for which the AI says ‘I don’t know’ (respectively, for every
n P N), and Ωknow “ Ωcdon’t know to be its complement. Define the ‘I don’t know’ function associated to the
AI Γ (respectively, tΓnu) to be ΞI

Γpιq “ 1 when ι P Ωknow and ΞI
Γpιq “ 0 when ι P Ωdon’t know (respectively,

with ΞI
tΓnu

pιq).

Thus far, we have established the general concept of computational problems and the various types of AI
that can solve them. We now turn our attention to a specific model of computational problems: the Markov
model, where inputs will be accessed via strings. This topic will be addressed in the following section.

1.4. Inputs given as strings. An AGI [57,58,63] – emulating human intelligence [78] – is expected to take
a finite string of characters as inputs, just like a human. This format of the input is also the basis for modern
chatbots. Another expectation of an AI, that is close to human level intelligence, is the ability to answer
questions in basic arithmetic. However, the AI must be able to handle numbers described as sentences, as
introduced by Turing in his seminal 1936 paper [77] and explained in the section “What is a ‘machine’/AI
and what is a problem? - Turing and numbers as sentences” in the main part of the paper. In particular, we
follow Turing and consider AIs that, instead of accessing an input ι by directly reading its rational evaluations
tfipιqu

k
i“1 P Qk (where k “ |Λ|), will instead access approximations to such rational numbers provided by

Turing machines. Such Turing machines, when given a precision n P N as input, return a rational number
that is within 2´n from fpιq for f P Λ. This is often referred to as the Markov model [46, 51] (although it
was introduced by Turing [77]) – as a Markov algorithm [46, 51, 70] can only handle a finite input string,
whereas a Turing machine can handle an infinite input string (typically treated as an oracle tape) [49].

Definition 1.16 (Strings corresponding to input numbers). Let tΞ,Ω,M,Λu be a finite-dimensional com-
putational problem, with Λ “ tf1, . . . , fku. Given an input ι P Ω, we say that Φ “ pΦ1,Φ2, . . . ,Φkq

corresponds to ι P Ω if, for every i, Φi is a Turing machine taking NÑ Q such that

|Φipnq ´ fipιq| ď 2´n for every n P N.

We denote by ΩM the set of all the Φ that correspond to some ι P Ω, and define ΞM pΦq – Ξpιq for the
unique input ι P Ω that Φ corresponds to (whose uniqueness is guaranteed by Definition 1.1). The superscript
M stands for Markov (see §4.1 for the extension of the SCI hierarchy to the Markov model).

This definition will be expanded upon in Definition 4.2, which further clarifies how the AI reads an input
Φ consisting of a k-tuple of Turing machines. We delay this technicality up to §4 to focus on stating our
main result, namely the CRP Theorem.

Remark 1.17 (Finite vs infinite strings as input and equivalence of models). The traditional model of Turing
computability of real valued functions [49] is with Turing machines taking approximations to computable
numbers on an infinite tape. This model is equivalent to the Markov model for single-valued functions
[18, 50]. However, the crucial part of the CRP is multivaluedness, and thus one has to develop the theory
in the Markov model specifically – the traditional model with an infinite input string is insufficient. In
particular, the Markov model allows the algorithm to see the ‘code’ producing the infinite sequence. Thus,
creating impossibility results become harder.

Remark 1.18 (Equivalent strings). Let Φ,Φ1 P ΩM . If Φ and Φ1 correspond to the same ι P Ω, we will write
Φ „ Φ1. This clearly defines an equivalence relation on ΩM .
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The notion of equivalent strings allows to define the concept Consistent Reasoning AI. This type of AI
always produces an answer (potentially ‘I don’t know’), and cannot be correct on one string but fail on an
equivalent string.

Definition 1.19 (Consistent Reasoning). Let tΞ,Ω,M,Λu be a computational problem and recall ΩM from
Definition 4.2. An AI Γ defined on ΩM is consistently reasoning if it always halts, and in addition, if Γ is
κ-correct on Φ, then Γ is κ-correct on every Φ1 P ΩM such that Φ1 „ Φ. If Γ is an ‘I don’t know’ AI, and
if it is κ-correct on Φ, then on every Φ1 P ΩM such that Φ1 „ Φ we have that Γ is κ-correct or says ‘I don’t
know’ on Φ1. An ‘I don’t know’ AI with giving up parameter tΓnunPN is consistently reasoning if Γn is
consistently reasoning for every n P N.

Example 1.20 (Consistent Reasoning). Suppose that Ω̂ Ď ΩM is such that for every ι P Ω there is exactly
one Φ P Ω̂ corresponding to ι and that there is an AI Γ: ΩM ÑM that is κ-correct on Ω̂. If Γ was actually
consistently reasoning, it would be κ-correct on all of ΩM .

2. THE CONSISTENT REASONING PARADOX – MATHEMATICAL STATEMENT

We are now ready to introduce a precise mathematical formulation of the five CRP statements (I) to (V) as
in §“The Consistent Reasoning Paradox (CRP)” on page 3 of the main part of the paper. These statements
are condensed in Theorem 2.1 below.

Theorem 2.1 (Consistent Reasoning Paradox). Let N1 ě 2 and N2 ě 1 be integer dimensions, κ “ 10´1

the accuracy parameter, and Ξ be any of the mappings in equations (LP), (BP) or (LASSO). For suitable
choices of positive rationals η, λ and α, there exist infinitely many inputs sets Ω of pairs pA, yq, where
A P QN2ˆN1 and y P QN2 , such that for the computational problem tΞ,Ω,M,Λu (Remark 1.2) and the
map ΞM : ΩM Ñ M (Definition 1.16), the following hold.
(I) (The non-hallucinating AI exists). Suppose that Ω̂ Ď ΩM is such that for every ι P Ω there is exactly

one Φ P Ω̂ corresponding to ι. Then there exists an AI Γ: ΩM ÑM that is κ-correct on Ω̂ and does not
κ-hallucinate on ΩM (by potentially not halting). However, no AI can correctly assign each Φ P ΩM to
the input ι P Ω it corresponds to, even when given an oracle for the true solution Ξpιq.

(II) (Attempting consistent reasoning yields hallucinations). Every AI Γ: ΩM Ñ M will κ-fail infinitely
often. Equivalently, if Ω̂ Ď ΩM is such that for every ι P Ω there is exactly one Φ P Ω̂ corresponding to
ι, there exists no AI Γ: ΩM ÑM that is simultaneously κ-correct on Ω̂ and consistently reasoning. In
particular, if Γ is within the κ-range of ΞM , then it κ-hallucinates on infinitely many Φ P ΩM .

(III) Let Γ: ΩM ÑM be an AI that is within the α-range of ΞM .
(a) (Detecting hallucinations is hard). Every algorithm Γ1 that always halts and, on input Φ, tries to

determine whether Γ has κ-hallucinated, will itself hallucinate on infinitely many Φ P ΩM , even
when given access to an oracle for the true solution ΞM pΦq.

(b) (Detecting hallucinations and randomness). Consider any subset ΩM0 Ď ΩM . If there exists a ran-
domised algorithm Γ1 that can detect κ-hallucinations of Γ with probability strictly greater than 1{2

on all the inputs of Ω0, then there exists a deterministic algorithm that detects κ-hallucinations of Γ

on Ω0. In particular, no randomised algorithm Γ1 can detect κ-hallucinations of Γ with probability
strictly greater than 1{2 on all the inputs of Ω.

(c) Given any p P p1{2, 1s, no randomised algorithm Γ1 that always halts and has access to a true
solution can detect κ-hallucinations of Γ with probability greater than or equal to p on all the
inputs of ΩM .

(IV) (Explaining the correct answer is not always possible). There is a subset Ω̂ Ď ΩM , such that for every
ι P Ω there is only one Φ P Ω̂ corresponding to ι, and with the following property. There exists an
AI Γ: ΩM Ñ M that halts and is always correct on Ω̂. However, there is a Φ P Ω̂, corresponding to
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the only ι P Ω such that |Ξpιq| ą 1, for which Γ cannot provide a logically correct explanation of the
solution (see Remark 2.4).

(V) (The fallible yet trustworthy explainable AI saying ‘I don’t know’). Consider the ‘indicator function of
single-valuedness’ Ξ˚, that is, for Φ P ΩM , Ξ˚pΦq “ 1 if ΞM pΦq is single-valued, and Ξ˚pΦq “ 0

otherwise. Then the following holds.
(a) There exists exactly one input ι0 P Ω with the following property: if Φ P ΩM is such that ΞM pΦq is

multi-valued then Φ corresponds to ι0.
(b) There exists a consistently reasoning, κ-trustworthy AI with ‘giving up’ parameter, tΓnunPN (where

Γn : Ω ÑMYt‘I don’t know’u for every n P N) that always halts such that its associated ‘I don’t
know’ function equals Ξ˚ and such that it can provide a logical explanation of the correct solutions.

(c) There does not exist any κ-trustworthy Γ1 : ΩM ÑMY t‘I don’t know’u such that its associated
‘I don’t know’ function equals Ξ˚.

It is a classical problem to determine non-trivial ‘natural’ problems that are comparable yet strictly easier
than the Halting problem [1, p. 30]. As the next theorem demonstrates, the CRP provides a plethora of such
‘natural’ problems.

Theorem 2.2 (Strictly easier than the Halting problem). Consider each of the computational problems
tΞ,Ω,M,Λu that are described in Theorem 2.1, which form the setup for the Consistent Reasoning Paradox.
They are all comparable to, and strictly easier (see §4.3) than the Halting problem.

The technical statements of Theorem 2.1 can be found in Theorem 4.23, Theorem 4.24 and Theorem 4.26.
The technical statement of Theorem 2.2 can be found in Theorem 4.9.

Remark 2.3 (The CRP, optimisation and Smale’s 9th problem [74] with extensions). The CRP springs out
of recent work on phase transitions (generalised hardness of approximation) in optimisation and Smale’s 9th
problem and its extensions [6] (see also [31]: ‘Problem 5 (J. Lagarias): Phase transitions and the Extended
Smale’s 9th problem’). It may seem surprising that the CRP occurs in basic problems in arithmetic such as
straightforward linear programs – that are so simple that humans can easily solve them, and for which there
exist a plethora of efficient algorithms that have been thoroughly analysed over the last decades [7–9,47,60,
66–68, 71, 81]. However, when the input numbers are replaced with equivalent sentences describing them,
the situation changes dramatically, and the phase transitions established in [6] occur, also in the Markov
model. This is the fundamental mechanism behind the CRP.

Remark 2.4 (Logical explanation). Theorem 2.1 (IV) and (Vb) have the expression ‘provide a logically
correct explanation of the solution’, which needs to be made precise. Mathematically, this means that one
can prove in the standard axiomatic system of mathematics (Zermelo-Fraenkel with the axiom of choice
– ZFC) the asserted solution. As mathematical reasoning is a natural part of human intelligence, an AGI
must surely be able to explain its mathematical deductions – just like a human. Thus, it is natural to define
‘logically correct explanation’ in terms of a mathematical proof in the standard axiomatic system (see also
Theorem 4.24 and Remark 4.27).

Remark 2.5 (Quantifying the CRP). The CRP Theorem 2.1 provides a collection of both positive and negat-
ive results regarding the existence of performant AIs capable of solving certain computational problems. In
particular, the negative results – such as CRP (II) – rely on the existence on inputs on which any candidate
AI will fail. As mentioned in §“The Consistent Reasoning Paradox (CRP) - A stronger CRP II: Failure sen-
tences and equivalence” on page 4 of the main part of the paper and in §“Stronger statements – Quantifying
the CRP” on page 7 of the Methods section, our proof techniques allow to prove much more. In fact, we can
provide upper bounds on the length of the inputs (written as codes in a programming language of preference,
such as Python or C++). We give such an example for CRP (II) in MATLAB in §5 in Theorem 5.5
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3. MAKING TRUSTWORTHY AI THAT SAYS ‘I DON’T KNOW’ – THE SCI HIERARCHY

3.1. The Solvability Complexity Index (SCI) hierarchy and ‘I don’t know’ functions. We start by
providing an informal review of the basics of the the SCI hierarchy for an easy reference. The mainstay
of the hierarchy are the ∆α

k classes, where the α is related to the model of computation. The full generality
can be found in [6, 10, 22, 23], however in this paper we will introduce the Markov model to the SCI – that
is, the input is always given as a finite string.

Given a collection C of computational problems (recall Definition 1.1), then
(i) ∆α

0 is the set of problems that can be computed in finite time (the SCI “ 0).
(ii) ∆α

1 is the set of problems that can be computed using one limit (the SCI “ 1) with control of the error,
i.e. D a sequence of algorithms tΓnu such that distMpΓnpιq,Ξpιqq ď 2´n, @ι P Ω.

(iii) ∆α
2 is the set of problems that can be computed using one limit (the SCI “ 1) without error control,

i.e. D a sequence of algorithms tΓnu such that limnÑ8 distMpΓnpιq,Ξpιqq “ 0, @ι P Ω.
(iv) ∆α

m`1, for m P N, is the set of problems that can be computed by using m limits, (the SCI ď m), i.e.
D a family of algorithms tΓnm,...,n1u such that

lim
nmÑ8

. . . lim
n1Ñ8

distMpΓnm,...,n1pιq,Ξpιqq “ 0, @ι P Ω.

In general, this hierarchy cannot be refined unless there is some extra structure on the metric space M.

The hierarchy typically does not collapse, and we have:

∆α
0 Ĺ ∆α

1 Ĺ ∆α
2 Ĺ . . . Ĺ ∆α

m Ĺ . . . . (3.1)

However, depending on the collection C of computational problems, the hierarchy (3.1) may terminate for a
finite m, or it may continue for arbitrary large m. The SCI hierarchy generalises the arithmetical hierarchy
[62] to arbitrary computational problems in any computational model. It is motivated by Smale’s program on
foundations of computational mathematics and some of his fundamental problems [72,73] on the existence of
algorithms for polynomial root finding – solved by C. McMullen [54,55] and P. Doyle & C. McMullen [28].
Many results, including McMullen’s work (see [10]), can be viewed as implicitly providing classifications
[28, 33, 36, 37, 54, 55, 80] (see Problem 5 in [31]) in the SCI hierarchy.

For a formal definition of the SCI hierarchy we need the concept of a tower of algorithms. In the general
case (see [6,10,23]) a tower of algorithms allows for any model of computation [15,24,32,34,49,52,65,77,
79]. This is referred to as a tower of algorithms of type α (see [6, 10, 23] for details), where α indicates the
model of computation. The definition below is of type α “ A (arithmetic) and encompasses both the Turing
model [77] and the Blum-Shub-Smale [16] model depending on how one defines recursivity. However, for
the purpose of proving the CRP we only need the concept of arithmetic tower and the Turing model.

Definition 3.1 (Tower of algorithms – Arithmetic tower). Given a computational problem tΞ,Ω,M,Λu and
a natural number k P N, an arithmetic tower of algorithms of height k for tΞ,Ω,M,Λu is a collection of
sequences of functions

Γnk : Ω ÑM, Γnk,nk´1
: Ω ÑM, . . . ,Γnk,...,n1

: Ω ÑM,

where nk, . . . , n1 P N and the functions Γnk,...,n1
at the lowest level in the tower satisfy the following:

for each ι P Ω the mapping pnk, . . . , n1, tιfufPΛq ÞÑ Γnk,...,n1
pιq “ Γnk,...,n1

ptιfufPΛq is recursive,
ιf :“ fpιq, and Γnk,...,n1

pιq is a finite string of rational numbers that can be identified with an element
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in M. Moreover, for every ι P Ω,

Ξpιq “ lim
nkÑ8

Γnkpιq,

Γnkpιq “ lim
nk´1Ñ8

Γnk,nk´1
pιq,

...

Γnk,...,n2pιq “ lim
n1Ñ8

Γnk,...,n1pιq,

where S “ limnÑ8 Sn means convergence of the form distMpSn, Sq Ñ 0 as nÑ8.

Remark 3.2 (Turing model for arithmetic towers). Throughout this paper we will only consider the Turing
model, thus any reference to arithmetic tower of algorithms or any reference to an algorithm will mean in
terms of Turing.

Definition 3.3 (Solvability Complexity Index). A computational problem tΞ,Ω,M,Λu is said to have Solv-
ability Complexity Index SCIpΞ,Ω,M,Λqα “ k with respect to a tower of algorithms of type α if k is the
smallest integer for which there exists a tower of algorithms of type α of height k. If no such tower exists then
SCIpΞ,Ω,M,Λqα “ 8. If there exists a tower tΓnunPN of type α and height one such that Γn1pιq P Ξpιq

for all ι P Ω for some n1 ă 8, then we define SCIpΞ,Ω,M,Λqα “ 0.

Definition 3.4 (The Solvability Complexity Index hierarchy). Consider a collection C of computational
problems (we will use tΞ,Ωu as a shorthand for tΞ,Ω,M,Λu) and let T be the collection of all towers of
algorithms of type α for the computational problems in C. Define

∆α
0 :“ ttΞ,Ωu P C | SCIpΞ,Ωqα “ 0u

∆α
m`1 :“ ttΞ,Ωu P C | SCIpΞ,Ωqα ď mu, m P N,

as well as
∆α

1 :“ ttΞ,Ωu P C | D tΓnu P T s.t. @ι P Ω distMpΓnpιq,Ξpιqq ď 2´nu.

When there is extra structure on the metric space M, say M “ R or M “ t0, 1u with the standard
metric, one may be able to define convergence of functions from above or below. This is an extra form of
structure that allows for a type of error control.

Definition 3.5 (The SCI Hierarchy (totally ordered set)). Given the setup in Definition 3.4, suppose in
addition that M is a totally ordered set, and that Ξ is single valued. Define

Σα0 “ Πα
0 “ ∆α

0 ,

Σα1 “ ttΞ,Ωu P ∆α
2 | D tΓnu P T s.t. Γnpιq Õ Ξpιq @ι P Ωu,

Πα
1 “ ttΞ,Ωu P ∆α

2 | D tΓnu P T s.t. Γnpιq Œ Ξpιq @ι P Ωu,

whereÕ andŒ denote convergence from below and above respectively, as well as, for m P N,

Σαm`1 “ ttΞ,Ωu P ∆α
m`2 | D tΓnm`1,...,n1u P T s.t. Γnm`1pιq Õ Ξpιq @ι P Ωu,

Πα
m`1 “ ttΞ,Ωu P ∆α

m`2 | D tΓnm`1,...,n1
u P T s.t. Γnm`1

pιq Œ Ξpιq @ι P Ωu.

For example, if the metric space is the totally ordered set M “ t0, 1u, from Definition 3.5 we get the SCI
hierarchy for arbitrary decision problems. The SCI hierarchy can be visualised as follows:

Πα
0 Πα

1 Πα
2

∆α
0 ∆α

1 Σα1 YΠα
1 ∆α

2 Σα2 YΠα
2 ∆α

3 ¨ ¨ ¨

Σα0 Σα1 Σα2

“

“

Ĺ Ĺ Ĺ Ĺ ĹĹ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

(3.2)

For details about the full SCI hierarchy (3.2) see [10–12, 22, 23, 41].
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Remark 3.6 (Generality of the SCI hierarchy). The SCI hierarchy can be made much more general than
suggested above (see [10,11,22,23,41]). However, for the purpose of proving the CRP, the above definitions
are sufficient.

Remark 3.7 (SCI hierarchy and the arithmetical hierarchy). The arithmetical hierarchy [75] is a special case
of the SCI hierarchy (see [10]). The SCI hierarchy is fundamentally based on limits rather than quantifiers
[75] – that form the foundation of the arithmetical hierarchy. For example, McMullen’s work on polynomial
root finding [28, 54, 55] and towers of algorithms, which is based on limits, is a part of the SCI hierarchy
– but not the arithmetical hierarchy. However, in special cases, the SCI hierarchy can be recovered through
quantifiers rather than limits (see [10]), as the arithmetical hierarchy is an example of.

3.2. Trustworthy AI and the Σ1 class – Sufficient and necessary conditions. Let tΞ,Ω,M,Λu be a
computational problem and κ ě 0, and recall the definitions of κ-trustworthy AI and their associated ‘I don’t
know functions’ as in Definitions 1.13 and 1.15. Consider the following question:

Question: Given a candidate ‘I don’t know’ function Ξ˚ : Ω Ñ t0, 1u, is there any κ-trustworthy AI
(with or without ‘giving up’ parameter) Γ such that

Ξ˚ “ ΞI
Γ?

We now give sufficient and necessary conditions to answer the question above. Recall that for a function
f : A Ñ B, we denote the preimage of b P B by f´1pbq “ ta P A | fpaq “ bu. We will use this notation
specifically for the preimages of problem functions in computational problems.

Theorem 3.8 (Sufficient and necessary conditions for trustworthy AI ). Let tΞ,Ω,M,Λu be a computational
problem and κ ě 0. Let Ξ˚ : Ω Ñ t0, 1u be a candidate ‘I don’t know’ function. Define Ω˚1 – pΞ˚q´1p1q.
Then the following holds.
(1) There exists a κ-trustworthy AI of the form Γ: Ω ÑMY t‘I don’t know’u such that Ξ˚ “ ΞI

Γ (as per
Definition 1.15) if and only if the two following conditions are satisfied:
(a) tΞ˚,Ω, t0, 1u,Λu P ∆A

0 ;
(b) There exists an algorithm Γ˚ : Ω˚1 ÑM wih Γ˚pιq P BκpΞpιqq for every ι with Ξ˚pιq “ 1.

(2) There exists a κ-trustworthy AI with ‘giving up’ parameter tΓnunPN (where Γn : Ω ÑMYt‘I don’t know’u

for every n P N) such that Ξ˚ “ ΞI
tΓnu

(see Definition 1.15) if and only if the two following conditions
are satisfied:
(a) tΞ˚,Ω, t0, 1u,Λu P ΣA1 ;
(b) There exists an algorithm Γ˚ : Ω˚1 ÑM such that Γ˚pιq P BκpΞpιqq for every ι with Ξ˚pιq “ 1.

4. PROOF OF THE CONSISTENT REASONING PARADOX (CRP)

In order to prove the CRP, we first need to extend the SCI framework to the Markov model. We recall the
definition of a computational problem from Definition 1.1.

4.1. Extending the SCI framework – Breakdown epsilons and the Markov model. Not all computa-
tional problems can be solved with perfect accuracy. The smallest achievable error of a computational
problem is its breakdown epsilon, as introduced in [6], and is presented in the following definition.

Definition 4.1 (Strong breakdown epsilon). Given a computational problem tΞ,Ω,M,Λu, we define its
arithmetic strong breakdown epsilon as follows:

εs,AB :“ suptε ě 0 | @Turing machine Γ, D ι P Ω such that distMpΓpιq,Ξpιqq ą εu.

Hence, the strong breakdown epsilon is the largest number ε ě 0 such that no algorithm can provide
accuracy exceeding ε. The following definition is an extension of Definition 1.16. It clarifies the concept of
a computational problem given in the Markov sense, where inputs are not accessed directly by reading their
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coordinates, but rather are accessed via ‘codes’ (or more precisely, the Gödel number of Turing machines)
that return approximations of such coordinates. We assume access to an injective function x¨y that associates
each Turing machine Φ to its Gödel number xΦy P N. There are different possible such Gödel numberings
x¨y; in the following, we assume one such Gödel numbering is fixed.

Definition 4.2. Given a finite-dimensional computational problem tΞ,Ω,M,Λu with Λ “ tf1, . . . , fku,
define its corresponding Markov problem as the following computational problem:

tΞ,Ω,M,ΛuM – tΞM ,ΩM ,M,ΛMu,

where we have the following.
(1) ΩM is the set of all possible tuples of Turing machines that compute the coordinates of inputs ι:

ΩM – tpΦ1,Φ2,Φ3, . . . ,Φkq : Dι P Ω so that for i “ 1, 2, . . . , k the function

Φi is a Turing machine taking NÑ Q such that |Φipnq ´ fipιq| ď 2´n for every n P Nu

(2) Given pΦ1,Φ2,Φ3, . . . ,Φkq P ΩM , there is a unique ιΦ P Ω so that |Φipnq ´ fpιΦq| ď 2´n for
i “ 1, 2, . . . , k and n P N (by Definition 1.1); we define the map ΞM : ΩM Ñ M by

ΞM pΦ1,Φ2,Φ3, . . . ,Φkq– ΞpιΦq.

We also say that Φ P ΩM corresponds to such ιΦ P Ω.
(3) ΛM “ tx¨y1, x¨y2, . . . , x¨yku where for i “ 1, 2, . . . , k, the map x¨yi : ΩM Ñ N is defined so that, for a

given element pΦ1,Φ2,Φ3, . . . ,Φkq P ΩM , xpΦ1,Φ2,Φ3, . . . ,Φkqyi is the Gödel number of Φi.

4.2. Defining equivalent sentences. For computational problems given in the Markov sense, inputs are
accessed indirectly via ‘codes’ that represent Turing Machines providing approximations to such inputs.
This association gives rise to the correspondence problem, defined below, which consists in assigning to
each code Φ the input ι it corresponds to.

Definition 4.3 (Correspondence Problem). Let tΞ,Ω,M,Λu be a computational problem with Ω Ď Qd

for some dimension d P N. The correspondence problem is the computational problem tΞ“,ΩM ,Ω,ΛMu,
defined in the following way.

(1) Given Φ P ΩM , by Definition 4.2, (2), there exists a unique ιΦ so that Φ corresponds to ιΦ. We define
the mapping Ξ“ : ΩM Ñ Ω by Ξ“pΦq– ιΦ for every Φ P ΩM .

(2) The set Ω is endowed with the discrete metric.

In the setup above, a computational problem tΞ,Ω,M,Λu was fixed and the concept of correspond-
ing Markov problem was presented. This gave a precise definition of ‘equivalence’ of codes: two codes
Φ,Φ1 P ΩM are equivalent if they correspond to the same input ι P Ω (in the sense of Definition 4.2, see
Remark 1.18). All these concepts are not subject to interpretation, as they are grounded in the mathematical
machinery of Turing Machines, which is a purely mathematical concept. However, in a more general sense,
one can define arbitrary equivalence relation on strings.

Definition 4.4 (Equivalent Sentences). Let k P N and let ΩM Ď pA˚qk be a set of k-tuples of strings in
the fixed alphabet A. Let P “ tPnunPN be a partition of ΩM (so that Pn X Pm “ H for n ‰ m and
Ť

nPN Pn “ ΩM ).
(1) Two tuples of strings σ, σ1 P ΩM are equivalent with respect to the partition P if there exists n P N

such that σ, σ1 P Pn. We will write σ „P σ1.
(2) A function ΞM : ΩM Ñ M respects the equivalence relation induced by the partition P if

σ, σ1 P ΩM , σ „P σ1 ùñ ΞM pσq “ ΞM pσ1q.

Here we have used a slight abuse of notation, as ΩM is used for the completely general case as well.
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Definition 4.4 allows to consider a general concept of sentences being equivalent, induced by the arbit-
rarily chosen partition S. In this work, we will only consider the mathematical definition of equivalence as
given by Turing and expressed in Definition 4.2, which can be interpreted as being induced by the natural
partition S – tpΞ“q´1pιquιPΩ on ΩM .

4.3. Oracle problems and reduction – Strictly easier than the Halting problem. In our statements about
the CRP the words strictly easier are used – for example in comparison with the Halting problem. We will
now make this precise. We consider problem A easier than problem B if having access to an oracle for B
allows us to solve A. Moreover, A is strictly easier if the converse does not hold, meaning that it is not
possible to solve B even with an oracle for A. The concept of an oracle is defined below.

Remark 4.5 (Oracles and Turing degrees). It is impossible to use the classical framework of Turing degrees
[75] in order to compare ‘hardness’ of problems to which the CRP applies. There are four reasons for this: (1)
the concept of the Turing degree does not allow for problems with multi-valued solutions; (2) the problems
to be compared have different domains; (3) the problems can be arbitrary computational problems outside of
the classical Turing degree framework; (4) the oracle can be inexact. The framework below resolves these
issues. In order to resolve (1), one may resort to the concept of Medvedev degrees [56]. However, one
realises that this does not resolve (2) and (3), as Medvedev degrees generalise Turing degrees. Indeed, to
resolve (2) and (3) it is natural to generalise many-one reduction [27], and the τ in Definition 4.6 serves
this purpose. The reduction below generalises many-one reduction to arbitrary problems, that can also have
multi-valued solutions (as in the Medvedev case), and allows for inaccurate oracles.

Definition 4.6 (Recursivity between two computational problems). Let tΞ1,Ω1,M1,Λ1u and tΞ2,Ω2,M2,Λ2u

be two computational problems with Λ1 “ tf1, f2, . . . , fk1u and Λ2 “ tg1, g2, . . . , gk2u. We say that a func-
tion τ : Ω1 Ñ Ω2 is recursive if it induces a recursive function, specifically, if the following composition is
recursive:

g ˝ τ ˝ f´1 : Qk1 Ñ Qk2 , f “ pf1, f2, . . . , fk1q, g “ pg1, g2, . . . , gk2q.

We can now define the oracle problem:

Definition 4.7 (Oracle problem). Let tΞ1,Ω1,M1,Λ1u and tΞ2,Ω2,M2,Λ2u be two computational prob-
lems with M2 “ Rd. Fix a parameter ω ě 0 and a recursive map τ : Ω1 Ñ Ω2. The computational problem
of Ξ1 with an oracle for Ξ2 with respect to τ is the following computational problem:

tΞ1,Ω1,M1,Λ1u
O,Ξ2,ω
τ – tΞO

1 ,Ω
O
τ ,M1,Λ

Ou,

with ΩO
τ :“ tpι, yq | ι P Ω1, y P BQ

ω pΞ2pτpιqqqu and ΞO
1 : ΩO Ñ M1 is such that ΞO

1 pι, yq :“ Ξ1pιq for
pι, yq P ΩO

τ . The set ΛO is defined as follows: we first set hjpyq – yj for y “ py1, . . . , ydq P Qd and
j “ t1, . . . , du. Next, we write Λ1 “ tf1, . . . , fku. We then define ΛO – tfOi u

k
i“1 Y th

O
j u

d
j“1, where

fOi : ΩO Ñ Q, fOi pι, yq “ fipιq, i “ 1, . . . , k;

hOj : ΩO Ñ Q, hOj pι, yq “ hjpyq, j “ 1, . . . , d.

With a slight abuse of notation we write tΞ1,Ω1,M1,Λ1u
O,Ξ2,ω P ∆A

0 if there is a computable τ with
tΞO

1 ,Ω
O
τ ,M1,Λ

Ou P ∆A
0 and conversely, we write tΞ1,Ω1,M1,Λ1u

O,Ξ2,ω R ∆A
0 if no such τ exists. In

this paper, we are primarily concerned with examining the case where the oracle is given exactly, that is
ω “ 0. For ease of readability, we write

tΞ1,Ω1,M1,Λ1u
O,Ξ2 – tΞ1,Ω1,M1,Λ1u

O,Ξ2,0

We can now provide the precise statement about the problems in the CRP being strictly easier than the halting
problem (defined as follows).
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Definition 4.8 (Halting Problem). As in §4.9, let T “ tϕ1, ϕ2, . . . u denote the set of all Turing machines
that map N to Q. The halting problem is the computational problem tΞH , T , t0, 1u,ΛHu, where:

(1) ΞHpϕ, nq– 1 if ϕpnq Ó, and ΞHpϕ, nq– 0 if ϕpnq Ò;
(2) ΛH “ tx¨y, fu where, for ϕ P T and n P N, xϕ, ny is defined to be (with slight abuse of notation)

the Gödel number of ϕ and fpϕ, nq :“ n

Theorem 4.9 (The problems in the CRP are strictly easier than the halting problem). Consider the setup of
§4.6.1, and the computational problem tΞM ,ΩM ,M,ΛMu from Definition 4.2. Let T “ tϕ1, ϕ2, . . . u be
the set of all Turing machines that map N to Q. When considering the halting problem from Definition 4.8,
the following holds.

(I) tΞM ,ΩM ,M,ΛuO,Ξ
H

P ∆A
0 . That is, one can compute ΞM when given access to an oracle for the

Halting problem.
(II) However, the Halting problem with an oracle for ΞM , given by

tΞH , T , t0, 1u,ΛHuO,Ξ
M

(see Definitions 4.2, 4.8 and 4.7) satisfies tΞH , T , t0, 1u,ΛHuO,ΞM R ∆A
0 .

4.4. Can correctness of AIs be checked? – The exit-flag problem and oracle computations. In this
section, we introduce two types of computational problems: the exit-flag problem, which consists in determ-
ining whether a given algorithm has produced a correct output (and is considered in CRP III); and the family
of oracle problems, which consist in solving a computational problem with the help of an oracle providing a
correct solution for an auxiliary computational problem (as considered in CRP I and CRP III).

Definition 4.10 (Exit-flag problem). Let tΞ,Ω,M,Λu be a computational problem, Γ : ΩM Ñ M an
algorithm for the corresponding Markov problem tΞM ,ΩM ,M,ΛMu and κ ą 0. The exit-flag problem is
the computational problem tΞEΓ ,Ω

M , t0, 1u,ΛMu, where the solution map ΞEΓ : ΩM Ñ t0, 1u is given by

ΞEΓ pΦq “

$

&

%

1 if Φ P ΩMΓ ,

0 if Φ P ΩMzΩMΓ ,
(4.1)

and where ΩMΓ denotes the set of inputs for which Γ obtains accuracy better than κ. More precisely,

ΩMΓ :“ tΦ P ΩM | distMpΓpΦq,Ξ
M pΦqq ď κu Ď ΩM . (4.2)

The metric on the space t0, 1u is inherited from R.

Observe that εs,AB ą κ implies that ΩMΓ is a strict subset of ΩM .

Remark 4.11 (Key assumption). Naturally, the exit-flag problem becomes trivial if Γ yields outputs that are
sufficiently far away from the range ΞM pΩM q. In fact, such outputs would not be ‘plausible’, and thus such
an algorithm Γ would not be a suitable candidate for attempting to solve the problem tΞM ,ΩM ,M,ΛMu.
Therefore, we must make a technical assumption regarding the type of AIs we will examine for the exit-flag
problem. Concretely, we fix an α such that 0 ď α ă κ and assume that Γ, our AI defined on ΩM , is within
the α-range of ΞM , according to Definition 1.11.

We now combine both the exit-flag computation and computation with oracles. We consider the problem
of the exit-flag associated to an algorithm Γ, given an oracle for the original computational problem ΞM .

Definition 4.12 (Exit-flag problem with oracle). Let tΞ,Ω,M,Λu be a computational problem with cor-
responding Markov problem tΞM ,ΩM ,M,ΛMu, Γ : ΩM Ñ M be an algorithm and κ P Q be a positive
number. Let τ : ΩM Ñ ΩM be a computable map. The exit-flag problem with oracle with respect to τ is the
computational problem

tΞEΓ ,Ω
M , t0, 1u,ΛMuO,Ξ

M

τ – tΞE,OΓ ,ΩE,Oτ , t0, 1u,ΛOu.
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where, following Definition 4.7, ΩE,Oτ :“ tpΦ, yq |Φ P ΩM , y P ΞM pτpΦqqu and the exit-flag map with
oracle ΞE,OΓ is given by

ΞE,OΓ pΦ, yq :“

$

&

%

1 if Φ P ΩMΓ ^ y P ΞM pτpΦqq;

0 if Φ P ΩMzΩMΓ ^ y P ΞM pτpΦqq;
(4.3)

Remark 4.13. Whilst this definition can be very easily adapted to the case where the oracle is given inexactly,
we do not do so in this paper.

4.5. Randomised algorithms. We now consider the case of probabilistic algorithms, whose output is not
a deterministic function of the input. We consider a general model of randomisation, that is broader than
the coin flips (or Bernoulli measures) considered in the seminal work of K. De Leeuw, E. F. Moore, C. E.
Shannon, and N. Shapiro [25]. In particular, it allows for more general sources of randomness via the concept
of computable measures [27].

4.5.1. Computable measures. S˚ is the set of finite strings over the set S, and λ denotes the empty string.
The concatenation of two strings σ and τ is denoted στ . The length of string σ is |σ|. If τ extends σ, we
write σ ĺ τ .

Definition 4.14. A (probability) pre-measure on t0, 1u˚ is a function ρ : t0, 1u˚ Ñ r0, 1s such that ρpσq “
ρpσ0q ` ρpσ1q for every σ P t0, 1u˚, and ρpλq “ 1.

The condition ρpλq “ 1 makes it a probability measure. A pre-measure ρ on t0, 1u˚ induces a measure
µρ on t0, 1uN in a natural way. Denoting by JσK the infinite strings whose initial segment is σ, that is
JσK – tστ | τ P t0, 1uNu, the measure µρ is uniquely determined by µρpJσKq “ ρpσq for every σ P t0, 1u˚

by the classical Carathéodory’s construction. Explicitly, we use the extension theorem for pre-measures
on semi-rings (see, for example, [48, Theorem 1.53] applied to the pre-measure ρ and to the semi-ring
R – tJσK | σ P t0, 1u˚u Y tHu). In particular, µρ is the measure induced by the outer measure

µ˚ρ pAq– inf

#

ÿ

nPN
ρpσnq | tσnunPN s.t. σn P t0, 1u˚ for all n P N, A Ď

ď

nPN
JσnK

+

,

by restriction to the class of measurable sets, namely the setsA for which µ˚ρ pBq “ µ˚ρ pBXAq`µ
˚
ρ pBXA

cq

for everyB Ď t0, 1uN. This class forms the σ-algebra of measurable sets on which the measure µρ is defined.
Sets of the form JσK for a finite string σ are referred to as cylinder sets and are measurable [48]. Given a
subset A Ď t0, 1u˚, we denote JAK –

Ť

σPAJσK.

Definition 4.15 (Computable Measure). We now define the concept of computability for (pre-)measures.
(1) A pre-measure ρ is computable if there exists a recursive function r : t0, 1u˚ ˆ NÑ Q such that

|rpσ, nq ´ ρpσq| ď 2´n for every n P N.

(2) A measure is computable if it is induced by a computable pre-measure ρ.

Remark 4.16. If ρ is a computable pre-measure, the recursive function r naturally extends to a recursive
function on finite strings, such that

|rpσ1, . . . , σk, nq ´ µρpJσ1, . . . , σkKq| ď 2´n for every n P N, σ1, . . . , σk P t0, 1u
˚ (4.4)

Remark 4.17. An important special case of the above definition is the computable pre-measure determined
by a Bernoulli process with computable parameter p P r0, 1s, given by ρppσq “ pkp1 ´ pq|σ|´k where k
is the number of 1’s appearing in σ. In particular, when p “ 1

2 , one obtains the fair Bernoulli measure
µ “ µρ 1

2

induced by the pre-measure ρ 1
2
pσq “ 2´|σ|. Equivalently, µρp can be seen as the product measure

on t0, 1uN induced by the Bernoulli probability measure ν on t0, 1u with parameter p given by νpt1uq “ p

and νpt0uq “ 1´ p.
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De Leeuw, Moore, Shannon and Shapiro [25] proved that the p-Bernoulli measure µp is computable if
and only if p is a computable real number.

4.5.2. Probabilistic Turing machines. Expanding on the definition by De Leeuw, Moore, Shannon and Sha-
piro [25], we define probabilistic Turing machines.

Definition 4.18. Let µ be a computable measure on t0, 1uN. A Probabilistic Turing machine (PTM) with
respect to µ is a Turing machine provided with an extra read-only tape, called the randomised tape, which is
initialised with a draw from the distribution µ.

Remark 4.19. This definition of Probabilistic Turing machines encompasses the traditional definitions of
probabilistic Turing machines with computable coin flips (namely, whenever µ “ µρ for computable p).

Γranpι, βq will denote the action of the PTM Γran on an input ι P Ω with β P t0, 1uN initialised on the
randomized tape. We could thus consider a Probabilistic Turing machine as a specific instance of a partial
function Γran : Ωˆt0, 1uN ÑM. Sometimes, we will consider Probabilistic Turing machines that read only
a finite portion of the randomised tape, in which case it will be interpreted (with a slight abuse of notation)
as a partial function Γran : Ωˆ t0, 1u˚ ÑM. We adopt the following additional notation: for every ι P Ω,
β P t0, 1uN, t P N, and σ P t0, 1u˚ we set:

Γranpι, βqrts– the output (if any) of Γran on input ι after querying only the first t bits of β;

Γranpι, σq– the output (if any) of Γran on input ι and finite string σ.

For every ι P Ω, the measure µ on t0, 1uN induces a measure PpΓranpιq P ¨q on the Borel σ-algebra BpMq

given by the pushforward

PpΓranpιq P Eq– µptβ P t0, 1uN | Γranpι, βq P Euq

for everyE P BpMq. This definition is justified by the fact that for every ι P Ω the function Γranpι, ¨q : t0, 1uN Ñ

M is measurable (with respect to the σ-algebra on t0, 1uN induced by the pre-measure ρ, and to the Borel
σ-algebra BpMq) as we will show in Proposition 4.29.

Definition 4.20. A Probabilistic Turing machine that always halts is a PTM for which the underlying func-
tion Γran : Ωˆ t0, 1uN ÑM is total, so that for every ι P Ω, Γranpι, βq Ó for every β P t0, 1uN.

Remark 4.21. The condition that a Probabilistic Turing machine always halts is stronger than the requirement
that Γran halts with probability one, which would instead read µptβ P t0, 1uN | Γranpι, βq Óuq “ 1 for every
ι P Ω.

4.6. Precise formulation of the CRP. In this section, we are finally ready to present the CRP theorem in a
completely precise form, using the notation and terminology developed up to this point.

4.6.1. The Setup for the CRP. We are about to state the Theorems that illustrate the Consistent Reasoning
Paradox, namely Theorems 4.23, 4.24 and 4.26. Such theorems will concern the computational problems of
Linear Programming, Basis Pursuit and Lasso as in (LP), (BP) and (LASSO). There are a number of aspects
that are common to each of the three theorems. These are as follows:

(1) The dimensions pN1, N2q for Linear Programming, Basis Pursuit and Lasso as in (LP), (BP) and
(LASSO) can be chosen to be any integer N1 and N2 with N1 ě 2 and N2 ě 1.

(2) The value κ, which represents the error tolerance for a solution to the computational problem, is set
to 10´1. The LASSO parameter λ in (LASSO) is assumed to satisfy κ ă λ ď 2κ and the basis
pursuit parameter η in (BP) satisfies κ ă η ď 2κ.

(3) We always treat the output of an algorithm solving LP, BP or Lasso as a rational vector. The distance
to the true solution is performed in } ¨ }p with p P NY t8u.
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(4) Given the dimensions pN1, N2q and the accuracy κ, there is an infinite family (indexed by an ad-
ditional parameter θ) of input sets ΩN1,N2pθq for which Theorems 4.23, 4.24 and 4.26 apply. This
input set applies to each part of the CRP and thus does not change throughout Theorems 4.23, 4.24
and 4.26.

(5) When we have fixed the dimensions pN1, N2q and the parameter θ, we set Ω “ ΩN1,N2
pθq. Thus

the set ΩM and ΞM are defined as in Definition 4.2.

4.6.2. The sets ΩN1,N2
and their related computational problems. We now introduce the class of problems

to which the CRP Theorems apply. Let N1 ě 2, N2 ě 1. Fix κ “ 10´1 and define for u1, u2 P Qą0:

Upu1, u2q :“ Upu1, u2, N1, N2q “

´

u1 u2

¯

‘

´

IN2´1 0N2´1ˆN1´N2´2

¯

,

b– bpN2q “ 2 ¨ κ ¨ e1,
(4.5)

where te1, . . . , eN2
u denotes the canonical basis of RN2 . For θ P r1{8, 1{4s XQ let

Lθ :“
 

pu1, u2q P rθ, 1{2s
2 | D at most one i with ui ‰ 1{2

(

XQ2.

Define the sets of inputs

ΩN1,N2
“ ΩN1,N2

pθq– tpbpN2q, Upu1, u2, N1, N2q | pu1, u2q P Lθqu. (4.6)

Remark 4.22. By varying θ P r1{8, 1{4s X Q in (4.6), we obtain infinitely many collections of inputs
ΩN1,N2

pθq for which the results of the CRP theorem hold.

Let Λ “ tgiu
N2
i“1 Y thi,ju

i“N2,j“N1

i“1,j“1 be given by the entry-wise component functions gipy,Aq – yi and
hi,jpy,Aq “ Ai,j for every i, j and py,Aq P QN2 ˆ QN2ˆN1 . We denote k – |Λ| “ N2 ` N2N1 and
rename and re-enumerate the functions so that Λ “ tfiui“1,...,k with f1 – h1,1 and f2 – h1,2.

4.6.3. The CRP theorems. Now that we have built up all the necessary mathematical machinery, we are
ready to state the CRP theorem precisely. The Consistent Reasoning Paradox is one unified theorem, but for
the sake of clarity it has been split into three distinct results.

Theorem 4.23 (CRP I and II). Consider the setup of §4.6.1 and §4.6.2, and the computational problem
tΞM ,ΩM ,M,ΛMu from Definition 4.2. Then, the following holds.

(I) If Ω̂ Ď ΩM such that |pΞ“q´1pιq X Ω̂| “ 1 for every ι P Ω, (where Ξ“ is as in Definition 4.3) then
there exists an algorithm Γ: ΩM Ñ BκpΞM pΩM qq satisfying the following two conditions.
(a) For every Φ P ΩM , either ΓpΦq P BκpΞM pΦqq or ΓpΦq Ò.
(b) ΓpΦq P BκpΞM pΦqq for every Φ P Ω̂.

However, the correspondence problem with an oracle for ΞM , given by tΞ“,ΩM ,Ω,ΛMuO,Ξ
M

satis-
fies tΞ“,ΩM ,Ω,ΛMuO,Ξ

M

R ∆A
0 (see Definitions 3.4, 4.3 and 4.7). More precisely, for any algorithm

with oracle Γ“,O : ΩO Ñ Ω there exists Φ P ΩM and y P ΞM pΦq such that Γ“,OpΦ, yq R Ξ“,OpΦ, yq.

(II) For every algorithm Γ: ΩM ÑM there exist (infinitely many) Φ P ΩM such that Γ κ-fails on Φ (see
Definition 1.7). In particular, for every algorithm Γ: ΩM Ñ M that always halts and is within the
κ-range of ΞM , there exist (infinitely many) Φ P ΩM such that Γ κ-hallucinates on Φ (see Definition
1.8).

Theorem 4.24 (CRP III and IV). Consider the setup of §4.6.1 and §4.6.2. Then, for the computational
problem tΞM ,ΩM ,M,ΛMu, the following holds.
(III) For every α P Q such that 0 ď α ă κ and for every algorithm Γ: ΩM Ñ M that is within

the α-range of ΞM (see Definition 1.11), consider the exit-flag problem associated to Γ given by
tΞEΓ ,Ω

M , t0, 1u,ΛMu as in Definition 4.10. Moreover, consider the exit-flag problem associated to
Γ with an oracle for ΞM , given by tΞEΓ ,Ω

M , t0, 1u,ΛMuO,Ξ
M

from Definition 4.12. Then the follow-
ing holds:
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(a) For any algorithm ΓE : ΩM Ñ t0, 1u that always halts, there exist (infinitely many) Φ P ΩM such
that ΓEpΦq ‰ ΞEΓ pΦq. Furthermore, for any computable map τ : ΩM Ñ ΩM , and any algorithm
ΓE,O : ΩE,Oτ Ñ t0, 1u that always halts there exist (infinitely many) pΦ, yq P ΩE,Oτ such that
ΓE,OpΦ, yq R ΞE,OΓ pΦ, yq.

(b) Fix any subset ΩM0 Ď ΩM . If there exists a probabilistic Turing machine ΓE,ran : ΩM0 Ñ t0, 1u

such that

P
`

ΓE,ranpΦq “ ΞEΓ pΦq
˘

ą
1

2
(4.7)

for every Φ P ΩM0 , then there exists a deterministic Turing machine ΓE : ΩM0 Ñ t0, 1u that
always halts such that ΓEpΦq “ ΞEΓ pΦq for every Φ P ΩM0 . In particular, there is no probabilistic
Turing machine ΓE,ran : ΩM Ñ t0, 1u such that (4.7) holds for every Φ P ΩM .

(c) There is no probabilistic Turing machine with oracle ΓE,O,ran : ΩE,O Ñ t0, 1u such that

P
´

ΓE,O,ranpΦ, yq P ΞE,OΓ pΦ, yq
¯

ą 1{2 (4.8)

for every pΦ, yq P ΩE,O.
(IV) Assume that ZFC is Σ1-sound (see [40, p. 155, Definition 1.21 and Remark 1.22]. Then there exists a

class Ω̂ Ď ΩM such that there is an algorithm Γ : Ω̂ Ñ BκpΞM pΩM qq satisfying the following:
(a) In the standard model of arithmetic, for every ι P Ω there exists exactly one Φ P Ω̂ that corres-

ponds to ι.
(b) In the standard model of arithmetic, for all Φ P Ω̂, the statement ΓpΦq P ΞM pΦq holds.
(c) There exists an Φ0 P Ω̂ so that it is impossible to prove that ΓpΦ0q P ΞM pΦ0q and that ΓpΦ0q R

ΞM pΦ0q within ZFC.

Remark 4.25. CRP IV provides a non-provability statement, which is a consequence of the non-computability
in the Markov model that we establish. This is analogous (yet mathematically different) to Gödel’s first
incompleteness theorem [39] – specifically for optimisation. This is very similar to how the negative an-
swer to Hilbert’s 10th problem [53] (non-computability of diophantine equations) yields a statement of non-
provability – as in Gödel’s first incompleteness theorem – specifically for diophantine equations [35].

Theorem 4.26 (CRP V). Consider the setup of §4.6.1 and §4.6.2. Then, for the computational problem
tΞM ,ΩM ,M,ΛMu as in Definition 4.2, the following holds.
(V) Define the function Ξ˚ : ΩM Ñ t0, 1u by

Ξ˚pΦq “

$

&

%

1 if |ΞM pΦq| “ 1;

0 if |ΞM pΦq| ą 1.

(a) There exists a unique ι0 P Ω such that for every Φ P ΩM , if Ξ˚pΦq “ 0 then Ξ“pΦq “ ι0 (where
Ξ“ is given as in Definition 4.2).

(b) There exists a κ-trustworthy AI with ‘giving up’ parameter tΓnunPN (where Γn : Ω Ñ M Y

t‘I don’t know’u for every n P N) such that its associated ‘I don’t know’ function satisfies
ΞI
tΓnu

“ Ξ˚.
(c) There does not exist any κ-trustworthy AI of the form Γ: ΩM ÑMYt‘I don’t know’u such that

its associated ‘I don’t know’ function satisfies ΞI
Γ “ Ξ˚.

Remark 4.27 (‘Provide a correct logical explanation for the solution’). In the main part of the paper, §“The
Consistent Reasoning Paradox (CRP)” (page 3), CRP IV and CRP V discuss algorithms that can (or cannot)
‘provide correct logical explanation’ of their solutions. This is to be interpreted in the following way: we say
that an algorithm Γ can provide a correct logical explanation of its answer on input Φ P ΩM if there exists
a proof within ZFC of the statement ‘ΓpΦq P ΞM pΦq’. In the CRP, statement (IV) of Theorem 4.24 shows
that for a specific algorithm there is an input for which which there is no proof of its correctness (nor of its



18 SUPPLEMENTARY MATERIAL

negation) in ZFC, and thus this algorithm cannot – nor can any other – provide a correct logical explanation
of its answer on every input. However, such proof relies on an extra assumption on ZFC (namely, its Σ1-
soundness), and thus such proof is not carried out within ZFC but in a larger meta-theory. On the other
hand, statement (Vb) of Theorem 4.26 shows that there exists a κ-trustworthy AI with ‘giving up’ parameter,
which in particular must be κ-correct whenever it does not output ‘I don’t know’; such proof is carried out
within ZFC itself, and thus proving (Vb) also automatically shows that there is a proof of (Vb) within ZFC.
Therefore, such κ-trustworthy AI can provide correct logical explanations of its solutions.

4.7. Proof of Theorem 3.8. We now provide a proof of Theorem 3.8, which gives necessary and suffi-
cient conditions for a candidate ‘I don’t know’ function Ξ˚ : Ω Ñ t0, 1u to be the ‘I don’t know function’
associated to a trustworthy AI.

Proof of Theorem 3.8. For the sake of brevity and to avoid repetition, we only give a proof of (2). Statement
(1) follows from a straightforward adaptation of this proof. We begin by showing one direction of the
implication. Let Ξ˚ : Ω Ñ t0, 1u be a function such that there exists a κ-trustworthy AI with ‘giving up’
parameter tΓnunPN such that Ξ˚ “ ΞI

tΓnu
. We will now prove that (2a) and (2b) hold.

Proof of (a): First, we prove that tΞ˚,Ω, t0, 1u,Λu P ΣA1 . For every n P N define Γ̃n : Ω Ñ t0, 1u to be
the algorithm given by

Γ̃npιq–

$

&

%

1 if Γnpιq ‰ ‘I don’t know’;

0 if Γnpιq “ ‘I don’t know’,
ι P Ω.

Since the map ptfipιquki“1, nq ÞÑ Γnpιq is recursive , it follows that the map ptfipιquki“1, nq ÞÑ Γ̃npιq is also
recursive. Fix ι P Ω. Note that from the κ-trustworthiness of Γ it follows that Γ̃npιq ď Γ̃n`1pιq for every
n P N. Indeed, if Γ̃npιq “ 1, then Γnpιq ‰ ‘I don’t know’ by construction, and thus for every n1 ě n we
have that Γn1pιq ‰ ‘I don’t know’ by Definition 1.13, which implies that Γ̃n1pιq “ 1. We conclude that

lim
nÑ8

Γ̃npιq “

$

&

%

1 if there is a k P N such that Γkpιq ‰ ‘I don’t know’

0 if for every k P N we have Γkpιq “ ‘I don’t know’

and thus limnÑ8 Γ̃npιq “ ΞI
tΓnu

pιq “ Ξ˚pιq. In particular, we have that

Γ̃n Õ Ξ˚ ùñ tΞ˚,Ω, t0, 1u,Λu P ΣA1 .

Proof of (b): From Ξ˚ “ ΞI
tΓnu

it follows that

Ω˚1 “ pΞ
˚q´1p1q “ pΞI

tΓnu
q´1p1q “ tι P Ω | Dn P N : Γnpιq ‰ ‘I don’t know’u “ Ωknow

as per Definition 1.15. Given an ι P Ω˚1 , we can find an nι such that Γnιpιq ‰ ‘I don’t know’ in the following
recursive way: iterate through n P N until we find an n such that Γnpιq ‰ ‘I don’t know’, and when we
find such an n, set nι “ n. This approach is recursive since tΓnunPN is assumed to be a κ-trustworthy AI
with ‘giving up’ parameter and thus the map pn, ιq ÞÑ Γnpιq is recursive. Thus, we can define the algorithm
Γ˚ : Ω˚1 ÑM as follows:

Γ˚pιq– Γnιpιq, @ι P Ω˚1 pi.e. every ι such that Ξ˚pιq “ 1q.

Then by the definition of κ-trustworthy AI as in Definition 1.13, since Γnιpιq ‰ ‘I don’t know’, we have
Γ˚pιq “ Γnιpιq P BκpΞpιqq. This concludes one implication.

Now we prove the reverse implication. Assume that Ξ˚ : Ω Ñ t0, 1u is an ‘I don’t know’ function
satisfying (2a) and (2b). We proceed to define a κ-trustworthy AI with ‘giving up’ parameter tΓnunPN so that
Ξ˚ “ ΞI

tΓnu
. Observe from (2a) that there exists a family of algorithms tΓ̃nunPN such that Γ̃n : Ω Ñ t0, 1u,

Γ̃npιq Õ Ξ˚pιq for every ι P Ω, and the map pn, ιq ÞÑ Γ̃npιq is recursive. Moreover, from (2b), there
exists an algorithm Γ˚ : Ω˚1 Ñ M such that Γ˚pιq P BκpΞpιqq for every ι P Ω˚1 , i.e. every ι P Ω such that
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Ξ˚pιq “ 1. We construct an AI with ‘giving up’ parameter tΓnunPN where Γn : Ω ÑMYt‘I don’t know’u

for every n P N is defined as follows:

Γnpιq–

$

&

%

Γ˚pιq if Γ̃npιq “ 1

‘I don’t know’ if Γ̃npιq “ 0
. (4.9)

We claim that this is a κ-trustworthy AI with ‘giving up’ parameter and that Ξ˚ “ ΞI
tΓnu

.

First, the map pn, ιq ÞÑ Γnpιq is recursive since Γ˚ and the map pn, ιq ÞÑ Γ̃npιq are recursive. Secondly,
whenever ι P Ω and nι P N are such that Γnιpιq ‰ ‘I don’t know’, it then holds that Γn1pιq ‰ ‘I don’t know’

for every n1 ě nι. To see this, recall that as a function of n, Γ̃npιq is increasing so that Γ̃n1pιq ě Γ̃nιpιq “ 1

by assumption (2a), and thus Γn1pιq ‰ ‘I don’t know’. Furthermore, using the assumption on Γ˚ given by
(2b) we see that and Γn1pιq “ Γ˚pιq P BκpΞpιqq for every n1 ě nι. Thus tΓnunPN is a κ-trustworthy AI
with ‘giving up’ parameter according to Definition 1.3.

Finally, we proceed to compute ΞI
tΓnu

and prove that it coincides with Ξ˚. Preliminarily, recall from (2a)

that Γ̃n Õ Ξ˚. Thus for every n P N, since Γ̃n ď Ξ˚ and Ξ˚ has values in t0, 1u, we have that Γ̃npιq “ 1

implies that Ξ˚pιq “ 1. Conversely, since Γ̃n Ñ Ξ pointwise and both Γ̃n and Ξ take values in the discrete
set t0, 1u, we see that Ξ˚pιq “ 1 implies that there exists n P N such that Γ̃npιq “ 1. We have thus proven
that Ξ˚pιq “ 1 if and only if there exists n P N such that Γ̃npιq “ 1. Therefore, by the construction of
tΓnunPN in (4.9), we have

Ωknow “tι P Ω | Dn P N : Γnpιq ‰ ‘I don’t know’u

“tι P Ω | Dn P N : Γ̃npιq “ 1u “ tι P Ω | Ξ˚pιq “ 1u “ pΞ˚q´1p1q “ Ω˚1 ,

and therefore ΞI
tΓnu

“ 1Ωknow “ 1Ω˚1
“ Ξ˚, concluding the proof of (2). �

4.8. De-randomising randomised algorithms. In this section, we focus our attention on randomised al-
gorithms aimed at solving computational problems. Recalling the definitions and notation presented in
§4.5.2, we consider a probabilistic Turing machine Γran. For every fixed ι P Ω, we denote for y P M and
t P N:

Spyq– tβ P t0, 1uN | Γranpι, βq “ yu Ď t0, 1uN;

Spy, tq– tσ P t0, 1ut | Γranpι, σq “ yu Ď t0, 1ut;

Out – ty PM | there exists β P t0, 1uN such that Γranpι, βq “ yu;

Outptq– ty PM | there exists β P t0, 1uN such that Γranpι, βqrts “ yu.

We start with the following lemma, which is a straightforward manipulation of the definitions and notation
presented above and in §4.5.2

Lemma 4.28. For every y PM, t P N, the following holds:
(1) JSpy, tqK Ď JSpy, t` 1qK;
(2) Spyq “

Ť

tPNJSpy, tqK;
(3) Outptq Ď Outpt` 1q;
(4) Out “

Ť

tPN Outptq;
(5) Both Spyq and JSpy, tqK are measurable in t0, 1uN;
(6) µρpSpyqq “ suptPN µρpJSpy, tqKq;
(7) If Outptq “ Out, then Spyq “ JSpy, tqK.

Proof. Properties (1) through (7) follow easily from Γran being a Probabilistic Turing machine. For (5),
observe that JSpy, tqK is measurable by virtue of being a finite union of cylinder sets, which are measurable;
and thus Spyq is measurable too, as countable union of measurable sets by (2). �
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Proposition 4.29 (Measurability). Let Γran be a probabilistic Turing machine with respect to the measure µ,
and let ρ be a computable pre-measure such that µ “ µρ. For every ι P Ω the function Γranpι, ¨q : t0, 1uN Ñ

M is measurable with respect to the σ-algebra on t0, 1uN induced by the pre-measure ρ, and to the Borel
σ-algebra BpMq.

Proof. Fix ι P Ω and let E P M be a measurable set. Recall that Γranpι, ¨q : t0, 1uN Ñ Qd Ď M, with
Qd “ tymu. Then

`

Γranpι, ¨q
˘´1
pEq “ tβ P t0, 1uN | Γranpι, βq P Eu

“ tβ P t0, 1uN | Γranpι, βq P E XQdu

“
ď

mPN
tβ P t0, 1uN | Γranpι, βq P E X tymuu “

ď

mPN s.t. ymPE

Spymq

Since countable unions of measurable sets are measurable, the conclusion follows from the fact that Spymq
is measurable for every m P N by Lemma 4.28. �

We will now prove that any single-valued function that can be computed by a probabilistic Turing machine
with probability ą 1{2 can be computed by a deterministic Turing machine, without randomised tape. The
proof is based on a ‘majority voting’ argument. We will also prove the analogous results for a certain class
of multi-valued functions and PTMs that always halt.

Proposition 4.30 (De-randomisation). Let tΞ,Ω,M,Λu be a computational problem.
(1) Suppose that Ξ: Ω ÑM is a single-valued function. If there exists a probabilistic Turing machine Γran

such that,

PpΓranpιq “ Ξpιqq ą
1

2
for every ι P Ω (4.10)

then there exists a deterministic Turing machine Γ: Ω ÑM (without randomised tape) such that Γpιq “

Ξpιq for every ι P Ω.
(2) Let Ξ: Ω Ñ M be a multi-valued function such that there exists y0 P Qd so that y0 P Ξpιq whenever

ι P Ω is such that |Ξpιq| ą 1. Assume that there exists a p ą 1{2 and a probabilistic Turing machine
Γran that always halts (as per Definition 4.20) and such that, for every ι P Ω

PpΓranpιq P Ξpιqq ě p (4.11)

Then there exists a deterministic Turing machine Γ1 such that Γ1pιq P Ξpιq for every ι P Ω.

Remark 4.31. Note that, given a computational problem tΞ,Ω,M,Λu satisfying the above conditions and
a subset Ω0 Ď Ω, the previous result can be applied to the computational problem restricted on Ω0 given by
tΞ|Ω0

,Ω0,M,Λ|Ω0
u. Therefore, if a random algorithm has a probability of success greater than 1

2 even on a
smaller subset of inputs, then there already exists a deterministic algorithm that solves the problem on such
inputs.

Proof of Proposition 4.30. We denote by µ the computable measure with respect to which each Turing ma-
chine Γran is defined. Since µ is by definition computable, there exists a computable pre-measure ρ such that
µ “ µρ as per Definition 4.15. Thus there exists a recursive function r as in Definition 4.15 that satisfies the
approximating condition (4.4).

Part (1): We begin by constructing the algorithm Γ. On input ι P Ω, Γ will do the following, where t is
initialised with t “ 1:

(Step 1) Run Γranpι, σq for all of the 2t binary sequences σ P t0, 1ut of length t, obtaining outputs Outptq “

ty1, . . . , ylu ĎM;
(Step 2) if there exists y P Outptq such that rpSpy, tq, tq ą 1{2` 2´t, return Γpιq– y;
(Step 3) otherwise, increase t to t` 1 and repeat from Step 1.
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We now proceed to verify the correctness of Γ. Fix ι P Ω. We will show that Γpιq “ Ξpιq. In particular,
we must prove that Γ halts on ι input and that it returns the same value as Ξpιq. Firstly, we prove that Γ halts
on ι. By assumption, µρpSpΞpιqqq ą 1

2 , so there exists δ ą 0 such that µρpSpΞpιqqq ą 1
2 ` δ. Moreover,

1
2 ` δ ă µρpSpΞpιqqq “ suptPN µρpJSpΞpιq, tqKq, which implies by the definition of supremum that for
sufficiently large t, µρpJSpΞpιq, tqKq ą 1

2 ` δ (and in particular, that Ξpιq P Outptq). Again, assuming t is
sufficiently large and using the fact that r satisfies (4.4), it follows that

rpSpΞpιq, tq, tq ě µρpJSpΞpιq, tqKq ´ 2´t ą
1

2
` δ ´ 2´t ą

1

2
` 2´t.

We conclude from the definition of Γ that Γ halts on ι. Finally, we proceed to prove that Γpιq “ Ξpιq. By
contradiction, if Γpιq “ y for some y ‰ Ξpιq, then by the halting condition of Γ there must exist t P N such
that rpSpy, tq, tq ą 1

2 ` 2´t; but by (4.4), this would imply that

µρpSpyqq ě µρpJSpy, tqKq ě rpSpy, tq, tq ´ 2´t ą
1

2
.

However, we also observe that, by assumption (4.10), µρpSpΞpιqqq “ PpΓranpιq “ Ξpιqq ą 1
2 , thus if

y ‰ Ξpιq, then

µρpSpyqq “ P pΓranpιq “ yq ď P pΓranpιq ‰ Ξpιqq “ 1´ µρpSpΞpιqqq ă 1´
1

2
“

1

2
,

which is a contradiction.This concludes the verification that Γpιq “ Ξpιq for every ι P Ω.

Part (2): First note that if n0 ą ´ log2

`

p´ 1
2

˘

, then by (4.4) we have

|rpσ1, . . . , σk, n0q ´ µρpJσ1, . . . , σkKq| ď 2´n0 ă p´
1

2
for every σ1, . . . , σk P t0, 1u

˚. (4.12)

We now construct Γ1. Fix an arbitrary n0 ą ´ log2

`

p´ 1
2

˘

. On input ι P Ω, Γ1 will do the following, where
t is initialised with t “ 1:

(Step 1) Run Γranpι, σq for all of the 2t binary sequences σ P t0, 1ut of length t, obtaining outputs Outptq “

ty1, . . . , ylu ĎM;
(Step 2) if there is y P Outptq such that rpSpy, tq, n0q ą

1
2 , halt and return Γ1pιq– y;

(Step 3) if instead Γranpι, σq Ó for all σ P t0, 1ut, halt and return Γ1pιq– y0;
(Step 4) otherwise, if neither of the above cases have occurred, increase t to t` 1 and repeat from Step 1.

We now verify the correctness of Γ1. Fix ι P Ω. We will show that Γ1pιq P Ξpιq. In particular, we must
prove that Γ halts, and that it returns a value belonging to the multi-valued function Ξ. Firstly, we note
that Γ1 halts on ι. This is an immediate consequence of the fact that Γran always halts: for every ι P Ω

there exists t0 P N such that Γranpι, σq Ó for every σ P t0, 1ut0 (since otherwise, there would be an infinite
β P t0, 1uN such that Γranpι, βq Ò which contradicts Definition 4.20 and the assumption that Γran always
halts). In particular, if Γ1 has not halted before Step 3 with t “ t0 then Γ1 will halt at this step.

We now proceed to prove that Γ1pιq P Ξpιq. As a first step, we will argue that if Γ1 halts on Step 2 then
Γ1pιq P Ξpιq. Let y “ Γ1pιq. By construction there must exist t P N such that rpSpy, tq, n0q ą

1
2 . By the

approximating property of r, this implies that

µρpJSpy, tqKq ą rpSpy, tq, n0q ´

´

p´
1

2

¯

ą
1

2
´ p`

1

2
“ 1´ p,

and therefore µρpSpyqq ě µρpJSpy, tqKq ą 1´p. Assume for the sake of contradiction that y “ Γ1pιq R Ξpιq.
By assumption (4.11) we know that PpΓranpιq P Ξpιqq ě p, so that

µρpSpyqq “ PpΓranpιq “ yq ď PpΓranpιq R Ξpιqq “ 1´ PpΓranpιq P Ξpιqq ď 1´ p,

which is a contradiction. We have thus shown that if Γ1 halts on Step 2 then y “ Γ1pιq P Ξpιq. We now
consider two cases, depending on the cardinality of Ξpιq.
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Case (I): If |Ξpιq| ą 1, then Γ1 halts at either Step 2 or Step 3. In the first case, we have just observed that
Γ1pιq P Ξpιq; whereas in the second case, by construction Γ1 returns Γ1pιq – y0 P Ξpιq by the definition of
y0 and the assumption that |Ξpιq| ą 1. Either way, we have shown that Γ1pιq P Ξpιq.

Case (II): If |Ξpιq| “ 1, we proceed to prove that Γ1pιq cannot halt on Step 3. In fact, if by contradiction
there exists t P N such that Γ1pιq halts at Step 3, then by construction of Γ1, it holds that

rpSpy, tq, n0q ď
1

2
for every y P Outptq, and Γranpι, σq Ó for every σ P t0, 1ut (4.13)

In particular, Outptq “ Out and thus Spyq “ JSpy, tqK for every y P Out. From hypothesis (4.11) we know
that Ξpιq P Out, and from (4.13) it follows that rpSpΞpιq, tq, n0q ď

1
2 . But then equation (4.12) together

with SpΞpιqq “ JSpΞpιq, tqK implies

µρpSpΞpιqqq “ µρpJSpΞpιq, tqKq ă rpSpΞpιq, tqq, n0q `

´

p´
1

2

¯

ď
1

2
` p´

1

2
“ p

and thus µρpSpΞpιqqq ă p, contradicting the fact that hypothesis (4.11) shows that µρpSpΞpιqqq ě p. Thus,
we have proven that if |Ξpιq| “ 1 then Γ1 cannot halt on Step 3. Since we have proven that Γ1pιq cannot halt
on Step 3, it must halt at Step 2, and we have already observed that if that occurs then Γ1pιq P Ξpιq. This
concludes the verification that Γ1pιq P Ξpιq for every ι P Ω. �

4.9. Constructing the family of sentences for the CRP. Fix an enumeration ϕ1, ϕ2, ϕ3, . . . of all Turing
machines T . Each of them can be interpreted as being a partial function ϕm : Ď N Ñ Q with domain
dompϕmq “ tn P N |ϕmpnq Óu. Define, for pm, tq P N2, the set

Wpm, tq :“ tn P N |ϕm halts on n in exactly t stepsu Ď N. (4.14)

Clearly, W is recursive and dompϕmq “
Ť

tě0 Wpm, tq for every m P N. Note that, for each m,n P N
there is at most one t P N so that n PWpm, tq.

Remark 4.32 (Crucial properties of W). All results in the current section involving the function W (namely,
Lemma 4.33 and Propositions 4.37 and 4.38) do not rely on the precise definition of W , but are based only
on two properties that it satisfies:
(Pi) for all m P N, ϕmpmq Ó if and only if there exists t P N such that m PWpm, tq;

(Pii) for all m P N, there is at most one t P N such that m PWpm, tq.
Therefore, the function W could be replaced by any other function W 1 satisfying the same properties (Pi)
and (Pii), and all the relevant results would still apply. We will exploit this in Section 5, wherein we produce
a computer code that has these two properties, but does not rely on evaluations of the number of steps a
Turing Machine takes and is thus more relevant for practical computer programming

The following Lemma allows to construct a universal family of inputs in ΩM that will be referenced
throughout most of the subsequent results and proofs. The importance of this family of inputs is that, for any
given algorithm, we can find an input in this family on which the algorithm is guaranteed to fail (this will be
the content of Proposition 4.37).

Lemma 4.33. Let tΞ,Ω,M,Λu be a computational problem with Λ finite so that Λ “ tfi | i P N, i ď ku

for some k P N, and with M a subset of Rd for some dimension d. Let tι1nu
8
n“1, tι2nu

8
n“1 be sequences in Ω

and ι0 P Ω. Suppose that the following conditions hold.
(a) For all i P t1, 2, . . . , ku and j P t1, 2u, there exist algorithms Γ̂ji such that Γ̂ji : N ˆ N Ñ Q with

|Γ̂ji pn, rq ´ fipι
j
rq| ď 2´n´1, as well as an algorithm Γ̂0

i : NÑ Q with |Γ̂0
i pnq ´ fipι

0q| ď 2´n´1 for
all n P N.

(b) |fipιjnq ´ fipι
0q| ď 2´n for all j P t1, 2u, every n P N, and every i P t1, 2, . . . , ku.
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For each m P N and i P t1, . . . , ku, define the following functions φmi : NÑ Q:

φmi pnq :“

$

’

’

&

’

’

%

Γ̂1
i pn, tq if rm PWpm, tqs ^ rt ď ns ^ rϕmpmq “ 1s;

Γ̂2
i pn, tq if rm PWpm, tqs ^ rt ď ns ^ rϕmpmq “ 2s;

Γ̂0
i pnq otherwise.

(4.15)

Then the following conclusions hold:
(1) For every m P N and i P t1, . . . , ku, φmi can be implemented as a Turing machine;
(2) For every m P N, tφmi u

k
i“1 P ΩM and in particular

tφmi pnquiPt1,2,...,ku,nPN corresponds to

$

’

’

&

’

’

%

ι1t for some t P N if ϕmpmq “ 1;

ι2t for some t P N if ϕmpmq “ 2;

ι0 if ϕmpmq R t1, 2u _ ϕmpmq Ò

(4.16)

in the sense of Definition 4.2 . More precisely, the natural number t in equation (4.16) is the unique
value t satisfying m PWpm, tq, provided ϕmpmq P t1, 2u.

Proof. For every m P N and i P t1, . . . , ku, each function φmi : N Ñ Q can be implemented as a Turing
machine as follows: φmi pnq checks whether for some t ď n it holds that m P Wpm, tq (at most one such t
exists) and if so, computes the value of ϕmpmq; if the value is j P t1, 2u, then φmi pnq returns Γ̂ji pn, tq, while
for any other value of ϕmpmq, or if there is no t ď n such that m P Wpm, tq, then φmi pnq returns Γ̂0

i pnq.
This proves (1). By definition, tφmi pnqunPN is equal to one of the following:

tφm
i pnqunPN –

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

tΓ̂0
i p1q, Γ̂

0
i p2q, . . . , Γ̂

0
i pt´ 1q, Γ̂1

i pt, tq, Γ̂
1
i pt` 1, tq, . . . u if ϕmpmq “ 1

^m PWpm, tq;

tΓ̂0
i p1q, Γ̂

0
i p2q, . . . , Γ̂

0
i pt´ 1q, Γ̂2

i pt, tq, Γ̂
2
i pt` 1, tq, . . . u if ϕmpmq “ 2

^m PWpm, tq;

tΓ̂0
i p1q, Γ̂

0
i p2q, . . . , Γ̂

0
i pt´ 1q, Γ̂0

i ptq, Γ̂
0
i pt` 1q . . . u if ϕmpmq R t1, 2u

_ϕmpmq Ò .

We now proceed to show (2) by considering two cases:
Case (I): if ϕmpmq R t1, 2u _ ϕmpmq Ò, then |φmi pnq ´ fipι

0q| “ |Γ̂0
i pnq ´ fipι

0q| ď 2´n´1 ď 2´n by
(a) for all n and i P t1, . . . , ku, proving that tφmi pnquiPt1,2,...,ku,nPN corresponds to ι0;

Case (II): ifϕmpmq “ j for j P t1, 2u, then tφmi pnquiPt1,2,...,ku,nPN corresponds to ιjt (where t is uniquely
determined by m P Wpm, tq) since for n ě t, |φmi pnq ´ fipι

j
t q| “ |Γ̂

j
i pn, tq ´ fipι

j
t q| ď 2´n´1 ď 2´n by

(a), and for n ă t,

|φmi pnq ´ fipι
j
t q| “ |Γ̂

0
i pnq ´ fipι

j
t q| ď |Γ̂

0
i pnq ´ fipι

0q| ` |fipι
0q ´ fipι

j
t q| ď 2´n´1 ` 2´n´1 “ 2´n,

by (a) and (b). We conclude that tφmi u
k
i“1 P ΩM and that (4.16) holds. Thus (2) is proven. �

4.10. The oracle problem – Removing an oracle. Next, we consider general results for computational
problems with an oracle. The following result shows that, under suitable assumptions, if there is an algorithm
that can solve the problem with oracle, it is possible to design an algorithm that can solve the same problem
without needing access to any oracle.

Proposition 4.34 (Removing an oracle). Let tΞ1,Ω1,M1,Λ1u and tΞ2,Ω2,M2,Λ2u be two computational
problems with M2 Ď Rd. Fix ω ě 0 and a computable map τ : Ω1 Ñ Ω2, and consider the computational
problem with oracle tΞ1,Ω1,M1,Λ1u

O,Ξ2,ω
τ (see Definition 4.7), where

ΞO
1 pΦ, yq “ Ξ1pΦq for pΦ, yq with Φ P Ω1 and y P BQ

ω pΞ2pτpΦqqq. (4.17)

Suppose that the following conditions hold, for some y1, y2 P Qd.
(a) For each ι P Ω2 there is at least one j P t1, 2u so that yj P BQ

ω pΞ2pιqqq.
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(b) There is an algorithm Γ0 : Ω2 ÑM2 such that Γ0pιq P BQ
ω pΞ2pιqq whenever ι P Ω2 is such that only

one of y1, y2 is in BQ
ω pΞ2pιqq (for other ι, Γ0pιq does not necessarily need to halt).

(c) Ξ1 is single-valued.
(d) There is an algorithm ΓO for (4.17) such that ΓOpΦ, yq P ΞO

1 pΦ, yq for every pΦ, yq P ΩO
1 .

Then, there exists an algorithm Γ: Ω1 ÑM1 such that ΓpΦq “ Ξ1pΦq for every Φ P Ω1.

To prove Proposition 4.34, we begin by stating and proving the following basic intermediary result:

Lemma 4.35 (Any computable randomness can be obtained from coin flips). Suppose q P r0, 1s is a com-
putable number number whose digits are computed by some Turing machine. Then there is a randomised
Turing machine that halts almost surely and returns 1 with probability q and 0 with probability 1´ q.

Proof of Lemma 4.35. Using the assumption that q is a computable number, we assume that there is an
algorithm that returns (for the binary expansion of q) the ith digit of q. To ensure that this binary expansion is
unique, we insist that the digits of the expansion do not converge to 1. We consider the following randomised
algorithm that will halt almost surely:
Algorithm Γran

RDA (Random Digit Algorithm):
Output: 1 (with probability q) or 0 (with probability 1´ q).

(Step 1) Initialise a counter i to 0.
(Step 2) Increment i by 1. Compute the ith digit of the binary expansion of q and let d P t0, 1u be this
digit.

(Step 3) Flip a coin. If it is heads, return d, else go to step 2.

This algorithm will halt after some number of steps. With probability 2´n, it returns its output dn (the n-th
digit of q) in step 3 when the counter i has value n. Thus, we obtain

PpΓran
RDA Óq “

ÿ

ně1

2´n “ 1, PpΓran
RDA “ 1q “

ÿ

ně1

2´n ¨ 1pdn “ 1q “ q,

where 1p¨q is a characteristic function such that 1pdn “ 1q “ 1 and 1pdn “ 0q “ 0 for all n P N. Otherwise,
the algorithm must return 0. Thus, as asserted, the algorithm halts almost surely, PpΓran

RDA “ 1q “ q and
PpΓran

RDA “ 0q “ 1´ q. �

Proof of Proposition 4.34. We prove this proposition using two steps.
Step I: We start by providing a randomised algorithm Γran : Ω1 Ñ BQ

ω pΞ2pΩ2qq such that

@Φ P Ω1 P
`

ΓranpΦq P BQ
ω pΞ2pτpΦqqq

˘

ě 2{3. (4.18)

The key property of this algorithm (defined below) is that it ‘gives up’ with a certain probability and continues
working with a certain probability. The first step is to define a ‘guessing’ algorithm Γran

g : Ω2 Ñ ty1, y2u

that attempts to guess the solution of Ξ2: more specifically, we chose Γran
g so that

P
`

Γran
g pτpΦqq “ y1

˘

“ 1{2, P
`

Γran
g pτpΦq

˘

“ y2q “ 1{2.

It is clear that Γran
g can be implemented on a randomised Turing machine.

Algorithm Γran : Ω1 Ñ BQ
ω pΞ2pΩ2qq:

Input: Φ P Ω1; Output: A candidate solution to Ξ2pτpΦqq (this algorithm randomly may not halt).

(Step 1) Use the recursive map τ to evaluate Γ0pτpΦqq.
(Step 2) Use the random digit algorithm (Γran

RDA) from Lemma 4.35 with the computable number q set so
that q “ 1{3. Branch depending on the result:

(Step 2a) If Γran
RDA “ 0, return Γran

g pτpΦqq and exit.
(Step 2b) If instead Γran

RDA “ 1, return Γ0pτpΦqq.
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Note that Γran is well defined as a randomised algorithm because τ is recursive.
Claim: We claim that (4.18) holds. To prove the claim we argue as follows. Set p “ 1{2 and consider

an arbitrary Φ P Ω1. We use assumption (a) and consider the two possible cases which depend on Φ. Case
(I): Both y1 and y2 are in BQ

ω pΞ2pτpΦqqq and Case (II): Only one of y1 and y2 are in BQ
ω pΞ2pτpΦqqq. When

Case (I) occurs, we observe that either ΓranpΦq “ Γ0pτpΦqq or ΓranpΦq returns Γran
g pΦq. The latter occurs

when Γran
RDA “ 0, which, by Lemma 4.35, happens with probability 2{3. By the definition of Γran

g , we have
that

y1, y2 P BQ
ω pΞ2pτpΦqqq ùñ P

`

Γran
g pΦq P BQ

ω pΞ2pτpΦqqq
˘

“ 1.

Hence, it immediately follows that we get the desired lower bound

P
`

ΓranpΦq P BQ
ω pΞ2pτpΦqqq

˘

ě 2{3. (4.19)

If instead Case (II) occurs and Γran
RDA outputs 0, ΓranpΦq will return Γran

g pΦq, which, by assumption (a), is
correct with probability 1{2. If instead Case (II) occurs and Γran

RDA outputs 1 the algorithm returns Γ0pΦq,
which (by assumptions (b) and the definition of Case (II) is correct. Hence, we have that

P
`

ΓranpΦq P BQ
ω pΞ2pτpΦqqq

˘

“ PpΓran
RDA “ 1q{2` P pΓran

RDA “ 0q “ 1{2 ¨ 2{3` 1{3 “ 2{3. (4.20)

We conclude the proof of the claim by observing that (4.19) and (4.20) yield (4.18).
Step II: We will now use Γran defined in Step I to construct Γ: Ξ1 Ñ M1 such that ΓpΦq “ Ξ1pΦq

for every Φ P Ω1. To do so, we will use ΓO : ΩO
1 Ñ M1 from assumption (d). Define the randomised

algorithm Γ̃ran : Ω1 Ñ M1 by Γ̃ranpΦq “ ΓOpΦ,ΓranpΦqq whenever ΓranpΦq Ó and set Γ̃ranpΦq Ò

whenever ΓranpΦq Ò. We claim that

@Φ P Ω1 P
´

Γ̃ranpΦq “ Ξ1pΦq
¯

ě 2{3. (4.21)

Indeed, to see (4.21) we start by observing that from assumption (d) we have ΓOpΦ, yq P ΞO
1 pΦ, yq for every

pΦ, yq P ΩO. Thus, (4.21) follows immediately from (4.17) and (4.18). Using (4.21) and assumption (c)
that Ξ1 is single valued, we can now appeal to Proposition 4.30 (1) and conclude that there is a deterministic
Turing machine Γ: Ω1 ÑM1 such that ΓpΦq “ Ξ1pΦq for every Φ P Ω1, finally establishing the claim of
the proposition. �

Remark 4.36. There is a subtlety in the proof of Proposition 4.34 that we shall now discuss. In constructing
Γ̃ran, we passed in the output of the randomised algorithm Γran in place of the oracle. But Γran is only
correct with a certain probability – thus, it may be that we are passing in an incorrect value to the assumed
oracle algorithm ΓO. This is not a concern however as we do not need to worry about whether ΓO gives
a correct answer, gives an incorrect answer or even fails to halt when the oracle tape is initialised with an
incorrect value. We only care that this happens with a small enough probability, which is what the argument
uses.

4.11. The driving propositions for CRP II-III – Help from developments on Smale’s 9th problem.
In this section, we present various results on the non-computability of certain computational problems of
interest, under suitable assumptions. Specifically, we extend the driving propositions in [6], used to deal with
Smale’s 9th problem in various computational models, to the Markov model associated to a computational
problem: given any algorithm that attempts to solve it, there will always be at least one input on which the
algorithm is guaranteed to fail.

Proposition 4.37 (Breakdown epsilons in the Markov model). Let tΞ,Ω,M,Λu be a computational problem
with Λ finite so that Λ “ tfi | i P N, i ď ku for some k P N, and with M a subset of Rd for some dimension
d. Let tι1nu

8
n“1, tι2nu

8
n“1 be sequences in Ω and ι0 P Ω. Suppose that the following conditions hold:



26 SUPPLEMENTARY MATERIAL

(a) For all i P t1, 2, . . . , ku and j P t1, 2u, there exist algorithms Γ̂ji such that Γ̂ji : N ˆ N Ñ Q with
|Γ̂ji pn, rq ´ fipι

j
rq| ď 2´n´1, as well as an algorithm Γ̂0

i : NÑ Q with |Γ̂0
i pnq ´ fipι

0q| ď 2´n´1 for
all n P N.

(b) We have |fipιjnq ´ fipι
0q| ď 2´n for all j P t1, 2u, every n P N, and every i P t1, 2, . . . , ku.

(c) There are sets S1, S2 ĎM and κ ą 0 such that infξ1PS1,ξ2PS2 dMpξ1, ξ2q ą 2κ and Ξpιjnq Ď Sj for
j “ 1, 2 and n P N.

(d) Assume that membership in BκpS2q is computable in the following sense: for every y P Qd Ď M,
there is an algorithm that returns true if y P BκpS2q and false if y R BκpS2q.

Then the corresponding Markov problem tΞ,Ω,M,ΛuM has the strong breakdown epsilon satisfying εs,AB ě

κ. More precisely, for any algorithm Γ : ttφmi u
k
i“1umPN Ñ M that always halts (and in particular, any

algorithm Γ : ΩM Ñ M), there exists q P N such that dMpΓptφ
q
i u
k
i“1q,Ξ

M ptφqi u
k
i“1qq ą κ, where

tφmi u
k
i“1 is defined as in Lemma 4.33 applied to the computational problem tΞ,Ω,Λ,Mu.

Proof. Let ttφmi u
k
i“1umPN Ď ΩM be as in Lemma 4.33. This construction relies on assumptions (a) and (b).

Let Γ : ttφmi u
k
i“1umPN ÑM be an algorithm that always halts. Construct the function γ : NÑ N:

γpmq–

$

&

%

1 if Γptφm1 , φ
m
2 , φ

m
3 , . . . , φ

m
k uq P BκpS2q;

2 otherwise.
(4.22)

There is an algorithm that computes γ by the assumption (d) on membership computability and because
Γ is an algorithm that is assumed to halt on every tφm1 , φ

m
2 , φ

m
3 , . . . , φ

m
k u. Hence there is a q P N such

that γ “ ϕq and by Remark 4.32 there is a unique t P N such that q P Wpq, tq. We have the following
possibilities, depending on the value of γpqq:

Case (I): If γpqq “ 1 then ϕqpqq “ γpqq “ 1, and thus by (4.16) from Lemma 4.33 we have that tφqi u
k
i“1

corresponds to ι1t . Consequently we see that ΞM ptφqi u
k
i“1q “ Ξpι1t q Ď S1 where the final inclusion uses (c).

Moreover, from the definition of γ it also holds that Γptφqi u
k
i“1q P BκpS2q.

However, from assumption (c) we also know that BκpS1q X BκpS2q “ H, and thus Γptφqi u
k
i“1q R

BκpΞM ptφqi uki“1qq.
Case (II): If γpqq “ 2, then ϕqpqq “ γpqq “ 2 and thus by (4.16) we have that tφqi u

k
i“1 corresponds

to ι2t . Therefore ΞM ptφqi u
k
i“1q “ Ξpι2t q Ď S2 by (c). Moreover, from the definition of γ it also holds that

Γptφqi u
k
i“1q R BκpS2q. Therefore Γptφqi u

k
i“1q R BκpΞM ptφ

q
i u
k
i“1qq.

Either way, we have proven that Γptφqi u
k
i“1q R BκpΞM ptφ

q
i u
k
i“1qq. This concludes the proof. �

4.11.1. Setup and assumptions for the exit-flag problem. In this section, we establish the assumptions that
will be relevant for the non-computability of the exit-flag problem (Definition 4.10) and the exit-flag problem
with oracle (Definition 4.12).

Let tΞ,Ω,M,Λu be a computational problem and fix κ, α P Q such that 0 ď α ă κ. We consider an
algorithm Γ : ΩM ÑM for the computational problem

tΞ,Ω,M,ΛuM “ tΞM ,ΩM ,M,ΛMu

such that Γ is within the α-range of ΞM as per Definition 1.11 (see Remark 4.11). Recall that Λ “ tfi | i P

N, i ď ku is of finite size k “ |Λ| and M Ď Rd for some dimension d P N.
We then consider the following assumptions about some ι0 P Ω, sequences tι1nunPN, tι

2
nunPN Ď Ω and

for j “ 0, 1, 2, sets Sj ĎM:
(Ai) For all i P t1, 2, . . . , ku, there exist algorithms Γ̂1

i , Γ̂
2
i such that Γ̂ji : N ˆ N Ñ Q with |Γ̂ji pn, rq ´

fipι
j
rq| ď 2´n´1 for j P t1, 2u, as well as an algorithm Γ̂0

i : N Ñ Q with |Γ̂0
i pnq ´ fipι

0q| ď 2´n´1,
for all n P N.

(Aii) |fipιjnq ´ fipι
0q| ď 2´n for all j P t1, 2u, every n P N, and every i P t1, 2, . . . , ku.

(Aiii) infξ1PS1,ξ2PS2 dMpξ1, ξ2q ą 2κ.
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(Aiv) Ξpιjnq Ď Sj for all n P N and j P t1, 2u and Ξpι0q “ S0.
(Av) ΞpΩq Ď Bκ´αpS0q Y Bκ´αpS1q Y Bκ´αpS2q.

(Avi) For S P tS2, S1zS0, S2zS0u, membership in BκpSq is computable in the following sense: for every
x P Qd, there is an algorithm that returns true if x P BκpSq and false if x R BκpSq.

(Avii) For j P t1, 2u, the sets Ξpιjnq satisfy ΞpιjnqzS
0 “ SjzS0 for all n P N.

For the exit-flag problem relative to Γ with oracle as in Definition 4.12, we will make the following extra
assumptions. Assume that there are rational vectors y1, y2 with

(Aviii) For each ι P Ω there is at least one j P t1, 2u with yj P Ξpιq.
(Aix) There is an algorithm Γ0 : ΩM ÑM such that Γ0pΦq P ΞM pΦq whenever Φ P ΩM is such that only

one of y1, y2 is in ΞM pΦq (for other Φ, Γ0pΦq does not necessarily need to halt).

4.11.2. Techniques for the exit-flag problem. In this section we prove two results on the non-computability
of the exit-flag problems, with and without oracle.

Proposition 4.38 (Non computability of the exit-flag). Consider the setup of §4.11.1 and suppose that as-
sumptions (Ai)-(Avii) hold. Then the exit-flag problem relative to Γ, given by tΞEΓ ,Ω

M , t0, 1u,ΛMu as spe-
cified in Definition 4.10, has strong breakdown epsilon satisfying εs,AB ě 1

2 .More precisely, for any algorithm
ΓE : ttφmi u

k
i“1umPN Ñ t0, 1u that always halts (and in particular, any algorithm ΓE : ΩM Ñ t0, 1u) there

exists q P N such that ΓEptφqi u
k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q, where tφmi u

k
i“1 is defined as in Lemma 4.33 applied

to the computational problem tΞ,Ω,Λ,Mu.

Proof. Let ttφmi u
k
i“1umPN Ď ΩM be as in Lemma 4.33. Note that this construction relies on assumptions

(Ai) and (Aii). Assume that ΓE : ttφmi u
k
i“1umPN Ñ t0, 1u is an algorithm that always halts. We define the

function γ : NÑ N in the following way:

γpmq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 if
“

rΓEptφmi u
k
i“1q “ 1^ Γptφmi u

k
i“1q P BκpS2qs

_ rΓEptφmi u
k
i“1q “ 0^ Γptφmi u

k
i“1q P BκpS1qzBκpS0qs

‰

;

2 if
“

rΓEptφmi u
k
i“1q “ 1^ Γptφmi u

k
i“1q R BκpS2qs

_r ΓEptφmi u
k
i“1q “ 0^ Γptφmi u

k
i“1q P BκpS2qzBκpS0qs

‰

;

3 otherwise.

(4.23)

Because ΓE and Γ are computable and always halt and because of assumption (Avi), the function γ is
computable and always halts. Therefore we can fix q such that γ “ ϕq . Additionally, since γ is computable,
by Remark 4.32 there is a unique t P N such that q P Wpq, tq. Then we have the following possibilities,
depending on the value of γpqq:

Case (I): If γpqq “ 1, then ϕqpqq “ γpqq “ 1 and thus by the definition of tφqi u
k
i“1, tφqi u

k
i“1 corresponds

to ι1t by (4.16). Therefore ΞM ptφqi u
k
i“1q Ď S1 by assumption (Aiv). There are two sub-cases that arise from

considering the definition of γ:
(i) If ΓEptφqi u

k
i“1q “ 1, then by (4.23) we must have Γptφqi u

k
i“1q P BκpS2q. But since BκpS2q X

BκpS1q “ H by assumption (Aiii), we have Γptφqi u
k
i“1q R BκpΞM ptφ

q
i u
k
i“1qq and thus ΓEptφqi u

k
i“1q ‰

ΞEΓ ptφ
q
i u
k
i“1q.

(ii) If ΓEptφqi u
k
i“1q “ 0, then by (4.23) we must have Γptφqi u

k
i“1q P BκpS1qzBκpS0q. But then using as-

sumption (Avii), we see that Γptφqi u
k
i“1q P BκpΞM ptφ

q
i u
k
i“1qq, and thus ΓEptφqi u

k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q.

Case (II): If γpqq “ 2, then ϕqpqq “ γpqq “ 2 and thus tφqi u
k
i“1 corresponds to ι2t by (4.16). Thus

ΞM ptφqi u
k
i“1q Ď S2 by assumption (Aiv). There are two sub-cases:

(i) If ΓEptφqi u
k
i“1q “ 1, then by (4.23) we must have Γptφqi u

k
i“1q R BκpS2q. But then Γptφqi u

k
i“1q R

BκpΞM ptφqi uki“1qq and thus ΓEptφqi u
k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q.

(ii) If ΓEptφqi u
k
i“1q “ 0, then by (4.23) we must have Γptφqi u

k
i“1q P BκpS2qzBκpS0q. But then using as-

sumption (Avii), we see that Γptφqi u
k
i“1q P BκpΞM ptφ

q
i u
k
i“1qq, and thus ΓEptφqi u

k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q.
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Case (III): If γpqq “ 3, then ϕqpqq “ γpqq “ 3 and thus tφqi u
k
i“1 corresponds to ι0 by (4.16). From the

definition of γ in (4.23) it is obvious that ΓEptφqi u
k
i“1q “ 0 and we further claim that Γptφqi u

k
i“1q P BκpS0q.

To see this, note that from the assumptions that Γ is within the α-range of ΞM , that 0 ď α ă κ and from
assumption (Av) we have

Γptφqi u
k
i“1q P BαpΞpΩqq Ď BαpBκ´αpS0 Y S1 Y S2qq Ď BκpS0 Y S1 Y S2q.

Simultaneously, using (4.23) we also see that Γptφqi u
k
i“1q R BκpS1YS2qzBκpS0q and therefore Γptφqi u

k
i“1q P

BκpS0q. Thus using assumption (Aiv) we see that Γptφqi u
k
i“1q P BκpS0q “ BκpΞpι0qq “ BκpΞM ptφqi uki“1qq.

We conclude that ΓEptφqi u
k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q.

In all cases we have proven that ΓEptφqi u
k
i“1q ‰ ΞEΓ ptφ

q
i u
k
i“1q, proving Proposition 4.38. �

Proposition 4.39 (Non computability of the exit-flag with an oracle). Consider the setup of §4.11.1 and
suppose that assumptions (Ai)-(Aix) hold. Then the exit-flag problem with oracle associated to Γ, as specified
in Definition 4.12 and given by tΞEΓ ,Ω

M , t0, 1u,ΛMuO,Ξ
M

, satisfies

tΞEΓ ,Ω
M , t0, 1u,ΛMuO,Ξ

M

R ∆A
0 .

Proof. The proof of this result will follow by reducing to the result of Proposition 4.38. To do this, we
verify that the assumptions of Proposition 4.34 hold. In the notation of Proposition 4.34, we set Ξ1 “ ΞEΓ ,
Ξ2 “ ΞM and ω “ 0. Assume for the sake of contradiction that there is a computable map τ : ΩM Ñ ΩM

and an algorithm ΓO such that ΓOpΦ, yq P ΞEΓ pΦq for every pΦ, yq with Φ P ΩM and y P ΞM pτpΦqq.
With these definitions, we now check assumptions (a)-(d) from Proposition 4.34. Assumption (a) is

identical to assumption (Aviii) from §4.11.1. Similarly, assumption (b) is identical to assumption (Aix) from
§4.11.1.

Assumption (c), that Ξ1 is single-valued, follows trivially from the definition of ΞEΓ . Finally, assumption
(d) from Proposition 4.34 is just the assumption we made for the sake of contradiction. We conclude by an
application of Proposition 4.34 that there is an algorithm ΓE with ΓEpΦq “ ΞEΓ pΦq for all Φ P ΩM . In
particular, ΓEptφmi u

k
i“1q “ ΞEΓ ptφ

m
i u

k
i“1q for each m P N.

This however contradicts Proposition 4.38, whose assumptions (Ai)-(Avii) are all assumed to hold in the
statement of Proposition 4.39. �

4.12. Minimisers of Convex Optimisation Problems. In this section, recalling the input set ΩN1,N2
dis-

cussed in §4.6.1, we will discuss various results related to the solutions of the optimisation problems con-
sidered in the CRP Theorems, namely Theorems 4.23, 4.24 and 4.26. These results are taken from [6] - we
repeat these simple proofs here for the sake of completeness.

4.12.1. Linear Programming. Let c “ 1N1
be the N1-dimensional vector of ones. Given A P RN2ˆN1 ,

y P RN2 , consider the Linear Programming (LP) mapping ΞLP : RN2 ˆ RN2ˆN1 Ñ RN1 given by

ΞLPpy,Aq– argmintxx, cy | x P RN1 , Ax “ y, x ě 0u

We now state a simple lemma that relates these inputs to the corresponding solutions of the LP problem. Its
proof is taken from [6].

Lemma 4.40 (Linear Programming). Let c “ 1N1 be the N1-dimensional vector of ones. Then the solution
ΞLP to the linear programming problem satisfies

ΞLPpb, Upu1, u2qq “

$

’

’

’

&

’

’

’

%

!

2κ
u1
e1

)

if u1 ą u2
!

2κ
u2
e2

)

if u2 ą u1
!

2κ
u1
pte1 ` p1´ tqe2q | t P r0, 1s

)

if u1 “ u2

.
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Proof of Lemma 4.40. Denote U – Upu1, u2q. For any feasible x (that is, x with x ě 0 and Ux “ b), and
recalling that u1 and u2 are assumed to be positive, we have

xc, xy ě x1 ` x2 ě
u1x1 ` u2x2

u1 _ u2
“

2κ

u1 _ u2
(4.24)

which implies that mintxc, xy |x ě 0, Ux “ bu ě 2κ{pu1 _ u2q . Furthermore, all claimed minimisers x
in the statement of the lemma are feasible for the LP problem and satisfy (4.24) as an equality. We can thus
deduce that they are indeed minimisers and that mintxc, xy |x ě 0, Ux “ bu “ 2κ{pu1 _ u2q, and that
the solutions to ΞLPpb, Uq are precisely those vectors x for which every inequality in (4.24) is obeyed as an
equality. More precisely, the following conditions must hold:
(1) If the first inequality is an equality then x3 “ x4 “ ¨ ¨ ¨ “ xN1

“ 0.
(2) If the second inequality is an equality then x2 “ 0 in the case u1 ą u2 and x1 “ 0 in the case u1 ă u2.

In the case u1 “ u2 this is always an equality.
It is straightforward to check that the x which satisfy all these conditions as well as the feasibility conditions
x ě 0 and Ux “ b are precisely the claimed minimisers in the statement of the lemma. �

4.12.2. Basis Pursuit. Let κ P Qě0 and η P Q be such that 0 ď η ď 2κ. The Basis Pursuit solution mapping
is

ΞBPpy,Aq– argmin
xPRN1

}x}1, such that }Ax´ y}2 ď η.

As with Lemma 4.40, this easy lemma about BP solutions and its proof are taken from [6].

Lemma 4.41 (Basis Pursuit). Assuming that 2κ ě η, we have

ΞBPpb, Upu1, u2qq “

$

’

’

’

&

’

’

’

%

!

2κ´η
u1

e1

)

if u1 ą u2
!

2κ´η
u2

e2

)

if u1 ă u2
!

2κ´η
u1

pte1 ` p1´ tqe2q | t P r0, 1s
)

if u1 “ u2

.

Proof of Lemma 4.41. Denote U – Upu1, u2q. From the definition of U and b, condition }Ux ´ b}2 ď η

becomes |u1x1 ` u2x2 ´ 2κ| ď η. Thus we have the following chain of inequalities:

pu1 _ u2q}x}1 ě pu1 _ u2qp|x1| ` |x2|q ě u1|x1| ` u2|x2| ě u1x1 ` u2x2 ě 2κ´ η, (4.25)

which implies that mint}x}1 | }Ux ´ b}2 ď ηu ě p2κ ´ ηq{pu1 _ u2q. On the other hand, all claimed
minimisers x defined in the statement of the lemma are feasible for the BP problem and satisfy (4.25) as an
equality. Therefore we can conclude that they are indeed minimisers and that mint}x}1 | }Ux´ b}2 ď ηu “

p2κ´ηq{pu1_u2q. From this, we deduce that the solutions to ΞBPpb, Uq are exactly the vectors x for which
every inequality in (4.25) is obeyed as an equality. More specifically, all the following conditions must hold:
(1) If the first inequality is an equality then x3 “ x4 “ ¨ ¨ ¨ “ xN1

“ 0.
(2) If the second inequality is an equality then x2 “ 0 in the case u1 ą u2 and x1 “ 0 in the case u1 ă u2.

In the case u1 “ u2, this is always an equality.
(3) If the third inequality is an equality then x1 and x2 are non-negative.
(4) If the final inequality is an equality then u1x1 ` u2x2 “ 2κ´ η.
It is a straightforward task to check that the x which fulfil these conditions are precisely the claimed minim-
isers in the statement of the lemma. �

4.12.3. LASSO. Let κ P Qě0 and λ P Q be such that 0 ă λ ď 2κ. The LASSO solution mapping is

ΞLASSOpy,Aq :“ argmin
xPRN1

λ}x}1 ` }Ax´ y}
2
2.

As with Lemmas 4.40 and 4.41, the following lemma regarding the solutions to the LASSO problem, as well
as its proof, are taken from [6].
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Lemma 4.42 (LASSO). Assuming that maxtu1, u2u ě λ{p4κq, the solution ΞLASSO to the LASSO problem
satisfies

ΞLASSOpb, Upu1, u2qq “

$

’

’

’

&

’

’

’

%

!

4u1κ´λ
2u2

1
e1

)

if u1 ą u2
!

4a2κ´λ
2u2

2
e2

)

if u1 ă u2
!

4u1κ´λ
2u2

1
pte1 ` p1´ tqe2q | t P r0, 1s

)

if u1 “ u2

.

Proof of Lemma 4.42. Denote U – Upu1, u2q. Consider the following candidate solutions, as in the state-
ment of the lemma, given by xopt “ 4u1κ´λ

2u2
1
e1 if u1 ě u2, and xopt “ 4u2κ´λ

2u2
2
e2 if u2 ą u1. We define the

dual vector p– Uxopt ´ b “ ´ λ
2pu1_u2q

e1 P Rm, which satisfies

´
2

λ
U˚p “

ˆ

1^
u1

u2

˙

e1 `

ˆ

1^
u2

u1

˙

e2 P B} ¨ }1px
optq

where B denotes the subdifferential of a function. Therefore, for every x P RN “ N1 we have

1

2
}Ux´ b}22 `

λ

2
}x}1 ě xUx´ b, py ´

1

2
}p}22 `

λ

2
}x}1

“ xUxopt ´ b, py ´
1

2
}p}22 `

λ

2

ˆ

}x}1 ´ xx´ x
opt,´

2

λ
U˚py

˙

ě
1

2
}Uxopt ´ b}22 `

λ

2
}xopt}1.

where the first inequality follows by expanding }pUx´bq´p}22, and the last inequality follows by expanding
the square }pUxopt ´ bq ´ p}2 and the fact that ´ 2

λU
˚p P B} ¨ }1px

optq. We deduce that xopt is a minimiser,
and that any vector x is a minimiser if and only if this chain of inequalities holds with equality. This is the
case if and only if Ux´ b “ p “ Uxopt´ b and }x}1´ xx´ xopt,´ 2

λU
˚py “ }xopt}1. From the definition

of U and b, this is equivalent to the conditions u1x1`u2x2 “ u1x
opt
1 `u2x

opt
2 “ 2κ´ λ

2pu1_u2q
, xj “ xoptj

for j “ 3, . . . , N , and

|x1| ´ px1 ´ x
opt
1 q

ˆ

1^
u1

u2

˙

“ |xopt1 |, and |x2| ´ px2 ´ x
opt
2 q

ˆ

1^
u2

u1

˙

“ |xopt2 |.

It is a straightforward to task to ensure that the vectors x that obey all these conditions are precisely those as
in the statement of the lemma. �

4.12.4. The collection of problems. The proof of the CRP results will rely on §4 (namely, Lemma 4.33,
Propositions 4.34, 4.37, 4.38, 4.39, and assumptions (Ai)-(Aix) in §4.11.1). As a consequence, we will now
construct some of the objects mentioned in the assumptions of these propositions. In particular, we proceed
to construct the sequences of inputs tι1nunPN Ď ΩN1,N2 and tι2nunPN Ď ΩN1,N2 , we construct the input
ι0 P ΩN1,N2

, we explicitly describe the sets S0, S1 and S2 and the vectors y1 and y2 that appear in the
aforementioned assumptions, and we construct the algorithms Γ̂ji (for j P t0, 1, 2u and i “ 1, . . . , k) that
return approximations to the coordinates of tι1nunPN, tι2nunPN and ι0.

Recall the discussion and setup in §4.6.1. For N1 ě 2, N2 ě 1, let k “ N2 ` N2N1. For any θ P
r1{8, 1{4s XQ, consider the collection of inputs ΩN1,N2 “ ΩN1,N2pθq as in (4.6). For n ě 1, we define

ι1n –

ˆ

b, U

ˆ

1

2
,

1

2
´

1

4n

˙˙

; ι2n –

ˆ

b, U

ˆ

1

2
´

1

4n
,

1

2

˙˙

; ι0 –

ˆ

b, U

ˆ

1

2
,

1

2

˙˙

. (4.26)

Fix κ “ 10´1 and let α P Q be such that 0 ď α ă κ. Then, depending on the computational problem
under consideration, we make the following definitions.

Case (LP): For the computational problem tΞLP,ΩN1,N2
pθq,M,Λu of Linear Programming as defined

in (LP), define:

S1 – t4κe1u; S2 – t4κe2u; S0 – t4κpte1 ` p1´ tqe2q | t P r0, 1su

y1 “ 4κe1; y2 “ 4κe2.
(4.27)
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Case (BP): For the computational problem tΞBP,ΩN1,N2
pθq,M,Λu of Basis Pursuit as defined in (BP),

and recalling from §4.6.1 that η P Q satisfies κ ă η ď 2κ, define:

S1 – t2p2κ´ ηqe1u ; S2 – t2p2κ´ ηqe2u ; S0 – t2p2κ´ ηqpte1 ` p1´ tqe2q | t P r0, 1su

y1 “ 2p2κ´ ηqe1; y2 “ 2p2κ´ ηqe2.
(4.28)

Case (LASSO): For the computational problem tΞLASSO,ΩN1,N2pθq,M,Λu of LASSO as defined in
(LASSO), and recalling from §4.6.1 that λ P Q satisfies κ ă λ ď 2κ, define:

S1 – t2p2κ´ λqe1u ; S2 – t2p2κ´ λqe2u ; S0 – t2p2κ´ λqpte1 ` p1´ tqe2q | t P r0, 1su

y1 “ 2p2κ´ λqe1; y2 “ 2p2κ´ λqe2.
(4.29)

In the proofs of Theorem 4.23, Theorem 4.24, and Theorem 4.26 we will often make use of a particular
algorithm Γ˚ which we define and analyse in the next Lemma.

Lemma 4.43. Consider the setup of §4.6.1, where Ω “ ΩN1,N2 is defined as in (4.6). Then there exists an
algorithm Γ˚ : ΩM ÑM such that for every Φ P ΩM , the following holds.

(i) if Φ corresponds to ι0, then Γ˚pΦq Ò;
(ii) if Φ does not correspond to ι0, then Γ˚pΦq P ΞM pΦq.

Proof. Consider the following algorithm Γ˚ : ΩM ÑM. Construction of Γ˚: on input Φ “ pΦ1,Φ2, . . . ,Φkq P

ΩM , Γ˚ acts as follows: initialise n “ 1, then:

(Step 1) Compute δ – Φ1pnq ´ Φ2pnq, and branch depending on the value of δ:
(Step 1a) if δ ą 2 ¨ 2´n, then return Γ˚pΦq– y1;
(Step 1b) if δ ă ´2 ¨ 2´n, then return Γ˚pΦq– y2;

(Step 2) If neither of these conditions are met then the loop continues by incrementing n and executing
the next iteration from Step 1.

Here y1 and y2 are defined as in §4.12.4. We now prove all the conclusions of the lemma. Let Φ P ΩM .
There are exactly two possibilities:

Case (*): Φ corresponds to ι0. Then, since ι0 “ pb, Up1{2, 1{2qq, we have that at each stage n of the loop
the value δ satisfies |δ| “ |Φ1pnq´Φ2pnq| ď |Φ1pnq´1{2|` |1{2´Φ2pnq| ď 2 ¨2´n using Definition 4.2.
Thus Γ does not halt at Step 1a nor Step 1b for any n. This shows that, in this case, ΓpΦq Ò, which proves
(i).

Case (**): Φ does not correspond to ι0. Then by definition of ΩN1,N2
as in (4.6), the input ι “ Ξ“pΦq

must be of the form ι “ pbpmq, Upu1, u2,m,Nqq with either u1 “
1
2 ą u2 or u1 ă

1
2 “ u2 (since the

only input ι for which u1 “ u2 is ι0, in which case u1 “ u2 “
1
2 ). Assume first that ι “ Ξ“pΦq is

such that u1 “
1
2 ą u2. In this case, by the setup of §4.12.4 and Lemmas 4.40, 4.41 and 4.42, we have

Ξpιq “ ΞM pΦq “ y1. Note that, because Φ1 and Φ2 satisfy the requirements of Definition 4.2, the value of δ
after n iterations satisfies δ “ Φ1pnq´Φ2pnq ě pu1´2´nq´pu2`2´nq ě pu1´u2q´2 ¨2´n ą ´2 ¨2´n,
and hence Step 1b never results in the termination of the algorithm. By contrast, since u1 ą u2, there exists
ε ą 0 such that u1 ą u2 ` ε. Thus (once again using that Φ1 and Φ2 satisfy the requirements of Definition
4.2), we see that δ “ Φ1pnq´Φ2pnq ě pu1´2´nq´pu2`2´nq ě pu1´u2q´2¨2´n ą ε´2¨2´n ą 2¨2´n

for sufficiently large n, so that there exists nΦ P N such that |Φ1pnq ´ Φ2pnq| “ Φ1pnq ´ Φ2pnq ą 2 ¨ 2´n

for n ě nΦ. Therefore there is an iteration n such that the algorithm Γ halts at Step 1a and returns ΓpΦq

with ΓpΦq “ y1 “ Ξpιq “ ΞM pΦq, as desired. The case u2 “
1
2 ą u1 is analogous. This proves (ii), which

concludes the proof of the lemma. �

4.13. Verifying the assumptions of each Proposition for the specific problems of the CRP. In the fol-
lowing Lemma, we explicitly verify the validity of various assumptions from previous Lemmas and Propos-
itions involving the mathematical objects defined above. In particular, it will follow that Lemma 4.33 and
Propositions 4.37, 4.38 and 4.39 can be applied.



32 SUPPLEMENTARY MATERIAL

Lemma 4.44. With the definitions and assumptions provided in §4.12.4, consider the inputs tι1nunPN,tι2nunPN,
ι0, the sets S0, S1, S2, and the vectors y1, y2. Then assumptions (a) and (b) of Lemma 4.33, (a) and (b) of
Proposition 4.34 (with Ξ2 “ ΞM , Ω2 “ ΩM , M2 “ M and Λ2 “ ΛM ), (a), (b), (c), (d) of Proposition
4.37, and all assumptions (Ai)-(Aix) of §4.11.1 hold.

Proof. Assumption (a) of Lemma 4.33, assumption (a) of Proposition 4.37, and assumption (Ai) from
§4.11.1 hold because we can define algorithms as follows: Γ̂ji : N ˆ N Ñ Q with Γ̂ji pn, rq “ fipι

j
rq, and

Γ̂0
i : NÑ Q with Γ̂0

i pnq “ fipι
0q, which satisfy |Γ̂ji pn, rq´fipι

j
rq| ď 2´n´1 and |Γ̂0

i pnq´fipι
0q| ď 2´n´1

for every n P N. These algorithms are well defined since fipι0q, fipιjrq are each rational numbers for
i P t1, 2, . . . , ku, j P t1, 2u, and r P N.

Assumption (b) of Lemma 4.33, assumption (b) of Proposition 4.37 and assumption (Aii) from §4.11.1
hold because, by direct computation from (4.26), |fipιjnq´fipι

0q| ď 2´n for every i P t1, . . . , ku, j P t1, 2u
and n P N.

Assumption (c) of Proposition 4.37 and (Aiii) from §4.11.1 follow from Lemma 4.40, 4.41 or 4.42, de-
pending on the specific problem under consideration. Indeed, for Linear Programming, infξ1PS1,ξ2PS2 dpξ1, ξ2q “

dp4κe1, 4κe2q “ 4κ}e1 ´ e2}p ě 4κ ą 2κ; for Basis Pursuit, since κ ă η ď 2κ, we have that
infξ1PS1,ξ2PS2 dpξ1, ξ2q “ dp2p2κ ´ ηqe1, 2p2κ ´ ηqe2q “ p4κ ´ 2ηq}e1 ´ e2}p ě 4κ ´ 2η ą 2κ; and
finally for Lasso, using κ ă λ ď 2κ, we have

inf
ξ1PS1,ξ2PS2

dpξ1, ξ2q “ dp2p2κ´ λqe1, 2p2κ´ λqe2q

“ p4κ´ 2λq}e1 ´ e2}p “ p4κ´ 2λq ě 4κ´ 2λ ą 2κ.

To verify assumption (d) of Proposition 4.37, we note that membership in BκpS2q is computable because
for any x P Qd, x P BκpS2q if and only if }x ´ y2}p ď κ, which is equivalent to either maxi“1,¨¨¨ ,kt|xi ´

y2
i u ď κ in the case p “ 8 (which can clearly be verified computationally), or it is equivalent to to |x1|

p `

|x2 ´ y
2
2 |
p ` |x3|

p ` ¨ ¨ ¨ ` |xd|
p ď κp if p P N. This inequality only involves positive integer exponents of

rational numbers (since p P N and κ P Q by assumption) and therefore both the left hand side and right hand
sides of this inequality can be computed exactly and thus compared computationally. Moreover, after noting
that S1zS0 “ S2zS0 “ H, the same proof shows the validity of assumption (Avi) of §4.11.1.

Assumption (Aiv) of §4.11.1 is easily verified, since by Lemmas 4.40, 4.41 and 4.42 we have Ξpι0q “ S0,
Ξpι1nq “ S1,Ξpι2nq “ S2 for every n P N.

Assumption (Av) holds since by Lemma 4.40, 4.41 or 4.42 we have ΞpΩq “ Ξpι0q “ S0 and thus

ΞpΩq Ď Bκ´αpS0q Y Bκ´αpS1q Y Bκ´αpS2q.

Assumption (Avii) of §4.11.1 is immediate from the fact that Ξpιjnq is independent of n and satisfies
Sj “ Ξpιjnq for j P t1, 2u and n P N, as is guaranteed by Lemma 4.40, Lemma 4.41 and Lemma 4.42.

Assumption (Aviii) of §4.11.1 and assumption (a) of Proposition 4.34 follow by the the rationality of κ, η
and λ as well; the definition of yj in (4.27), (4.28) and (4.29) for each computational problem (ΞLP, ΞBP

and ΞLASSO); the definition of ΩN1,N2
; and Lemmas 4.40, 4.41, and 4.42.

Finally to see that assumption (Aix) of §4.11.1 and assumption (b) of Proposition 4.34 hold, we use the
algorithm in Lemma 4.43. Indeed, the only Φ P ΩMN1,N2

for which the algorithm Γ˚ in Lemma 4.43 does
not halt are those Φ which correspond to ι0 (by part (i) of Lemma 4.43). By Lemma 4.40, Lemma 4.41 or
Lemma 4.42 as appropriate, we see that y1, y2 P ΞM pΦq for such Φ. For all other Φ, Γ˚pΦq P ΞM pιq by
Lemma 4.43, part (ii).

This concludes the proof that all assumptions involving the mathematical objects constructed in the current
section §4.12.4 are satisfied. �

4.14. The proof of the CRP I-V. Armed with the setup and discussions in §4.6.1 and §4.12, we proceed to
prove the theorems that collectively constitute the CRP, namely Theorem 4.23, Theorem 4.24, and Theorem
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4.26. Recall that, according to the setup of §4.6.1, we take N1 ě 2, N2 ě 1, κ “ 10´1, λ P Q such that
κ ă λ ď 2κ, and η P Q such that κ ă η ď 2κ, and assume that Rd is equipped with the distance induced by
the } ¨ }p norm for p P N Y t8u. Moreover, recall from the statement of the aforementioned theorems that,
whenever parameters α and ω appear, they satisfy α, ω P Q and 0 ď α ď ω ă κ.

We now prove in succession the three theorems that collectively establish the CRP.

Proof of Theorem 4.23, CRP (I) and (II). Consider the setup of §4.6.1 and the solution mappings ΞLP, ΞBP

and ΞLASSO, corresponding to the (LP), (BP) and (LASSO) problems respectively. Let θ P r1{8, 1{4s X Q
be arbitrary, and consider the input set Ω “ ΩN1,N2

pθq defined in (4.6). The proof is almost identical for
the mappings ΞLP, ΞBP and ΞLASSO. Therefore we will use Ξ to denote any of them as appropriate and
only mention where this particular choice leads to small differences in the argument. Indeed, let S1, S2, S0,
tι1nunPN, tι2nunPN, ι0, y1 and y2 be defined as in §4.12.4, depending on the choice of either ΞLP, ΞBP or
ΞLASSO, and recall the definition of Ξ“ from Definition 4.3.

Proof of (I): Let Ω̂ Ď ΩM such that |pΞ“q´1pιq X Ω̂| “ 1 for every ι P Ω. In particular, there exists one
string Φ0 “ pΦ0

1,Φ
0
2, . . . ,Φ

0
kq P ΩM that corresponds to ι0 P Ω. We construct the following algorithm Γ

which itself utilises the algorithm Γ˚ from Lemma 4.43.
Construction of Γ: on input Φ “ pΦ1,Φ2, . . . ,Φkq P ΩM , Γ acts as follows:

(Step 1) if Φ “ Φ0, then return ΓpΦq– y1 ;
(Step 2) otherwise, if Φ ‰ Φ0, then run the algorithm Γ˚ on Φ and return ΓpΦq– Γ˚pΦq.

We now prove that, for every Φ P ΩM , either ΓpΦq P BκpΞM pΦqq or ΓpΦq Ò, and that ΓpΦq P BκpΞM pΦqq
for every Φ P Ω̂. We will consider three cases.

Case (*): If Φ “ Φ0, then Γ halts at Step 1 and returns ΓpΦq “ y1. Note that by either Lemma 4.40,
Lemma 4.41 or Lemma 4.42 depending on the problem under consideration, it follows that y1 P Ξpι0q “

ΞM pΦq as desired.
Case (**): If Φ ‰ Φ0 and Ξ“pΦq “ ι0, then Γ˚pΦq Ò by conclusion (i) of Lemma 4.43 and thus ΓpΦq Ò.
Case (***): If Φ ‰ Φ0 and Ξ“pΦq ‰ ι0, then ΓpΦq P BκpΞM pΦqq by conclusion (ii) of Lemma 4.43.

Thus, all the desired properties for Γ from the statement of Theorem 4.23 have been verified.
Finally, to conclude the proof of (I), it remains to show that the correspondence problem with oracle and

tΞM ,ΩM ,M,ΛMu are related in the following way:

tΞM ,ΩM ,M,ΛMuO,Ξ
“

P ∆A
0 , whereas tΞ“,ΩM ,Ω,ΛMuO,Ξ

M

R ∆A
0

(as per Definitions 4.3 and 4.7).
We start with the former. We let τI : ΩM Ñ ΩM be the identity map. Obviously, τI is a recursive as

per Definition 4.6. Recall from §4.6.2 and (4.5) that each ι P Ω is of the form ι “ pb, Upu1, u2qq, where
u1, u2 P Qą0 and

Upu1, u2q “

´

u1 u2

¯

‘

´

IN2´1 0N2´1ˆN1´N2´2

¯

, b “ 2 ¨ κ ¨ e1, κ “ 10´1.

We define the algorithm Γ1 as follows: given an input in pΦ, zq with Φ P ΩM and z P Ξ“pΦq, we set

Γ1pΦ, zq–

$

&

%

y1 if u1 ě u2;

y2 if u1 ă u2,
where z “ pb, Upu1, u2qq “ Ξ“pΦq

(where y1 and y2 are chosen according to (4.27), (4.28) or (4.29) as appropriate). Thus Γ1pΦ, zq P ΞM pΦq

by Lemmas 4.40, 4.41 and 4.42. This shows that tΞM ,ΩM ,M,ΛMuO,Ξ
“

P ∆A
0 , as claimed.

By contradiction, assume that τ : ΩM Ñ ΩM is a computable map and that Γ“,O is an algorithm such
that Γ“,OpΦ, yq P Ξ“,OpΦ, yq whenever pΦ, yq are such that Φ P ΩM and y P ΞM pτpΦqq. Our strategy is
to apply Proposition 4.34. More specifically, in the notation of Proposition 4.34, we define Ξ1 : ΩM Ñ Ω so
that Ξ1 “ Ξ“, and Ξ2 : ΩM ÑM so that Ξ2 – ΞM .



34 SUPPLEMENTARY MATERIAL

We now verify that all the assumptions of Proposition 4.34 hold. Assumptions (a) and (b) follow from
Lemma 4.44. Assumption (c) clearly holds because Ξ1 : ΩM Ñ Ω is single-valued. Assumption (d) follows
from the current hypothesis on the existence of the algorithm Γ“,O.

Thus, all assumptions of Proposition 4.34 are verified. Hence, by Proposition 4.34, there exists an al-
gorithm Γ“ : ΩM Ñ Ω such that Γ“pΦq “ Ξ“pΦq for all Φ P ΩM .

We now define the algorithm Γ2 : ΩM Ñ Qk by Γ2pΦq “ Γ1pΦ,Ξ“pΦqq. Then Γ2pΦq P ΩM pΦq.On the
other hand, Lemma 4.44 ensures that we can apply Proposition 4.37, which states there exists q P N such
that dMpΓ2ptφ

q
i u
k
i“1q,Ξ

M ptφqi u
k
i“1qq ą κ. This is a contradiction.

Therefore, we have shown that for any algorithm with oracle Γ“,O : ΩO Ñ Ω there exists Φ P ΩM and y P
ΞM pΦq such that Γ“,OpΦ, yq R Ξ“,OpΦ, yq. In particular, from Definition 3.4, we immediately obtain
tΞ“,ΩM ,Ω,ΛMuO,Ξ

M

R ∆A
0

Proof of (II): Let Γ: ΩM Ñ M be an algorithm. If there exists Φ P ΩM such that ΓpΦq Ò, then by
Definition 1.7, Γ κ-fails on Φ. Alternatively, if the algorithm Γ always halts, then Lemma 4.44 guarantees that
all assumptions of Proposition 4.37 are verified in the setup of §4.6.1. Therefore, we can apply Proposition
4.37 and conclude that there exists m P N such that

dM
`

Γptφmi u
k
i“1q,Ξ

M ptφmi u
k
i“1q

˘

ą κ.

Thus for such an m P N, Γptφmi u
k
i“1q R BκpΞM ptφmi uki“1qq so that Γ κ-fails on tφmi u

k
i“1 P ΩM as per

Definition 1.7.
To show that there exist infinitely many other Φ1 P ΩM on which Γ κ-fails, assume by contradiction that

there are only finitely many Φ1, . . . ,Φn such that Γ κ-fails on Φi for i “ 1, . . . , n. For every ιi “ Ξ“pΦiq,
let xi P BQ

κ pΞpι
iqq. Then the following algorithm:

Γ̃ : ΩM ÑM, Φ ÞÑ

$

&

%

xi if Φ “ Φi for some i “ 1, . . . , n

ΓpΦq otherwise,

always halts and is such that Γ̃pΦq P BκpΞM pΦqq for every Φ P ΩM . This contradicts the above argument
(applied to the algorithm Γ̃). Therefore, there must be infinitely many inputs in ΩM for which Γ̃ κ-fails.
The second part of the statement follows directly from Remark 1.12. We have thus completed the proof of
(II). �

Remark 4.45. The final part of the proof of (I), from the construction of Γ1, ends with a simple argument
that the correspondence problem is non-computable. This fact can be established in many ways, for example
using Rice’s theorem [75]. However, the point of our result is to show that computing ΞM (being consistently
reasoning) is strictly easier than the correspondence problem. Further comparisons between the computation
of ΞM and standard computational problems are done in Theorem 4.9.

Proof of Theorem 4.24, CRP (III) and (IV): As in the proof of Theorem 4.23, consider the setup of §4.6.1
and the solution mappings ΞLP, ΞBP and ΞLASSO, corresponding to the (LP), (BP) and (LASSO) problems
respectively. Let θ P r1{8, 1{4s XQ be arbitrary, and consider the input set Ω “ ΩN1,N2

pθq defined in (4.6).
The proof is almost identical for the mappings ΞLP, ΞBP and ΞLASSO. Therefore we will use Ξ to denote
any of them as appropriate and only mention where this particular choice leads to small differences in the
argument. Indeed, let S1, S2, S0, tι1nunPN, tι2nunPN, ι0, y1 and y2 be defined as in §4.12.4, depending on
the choice of either ΞLP, ΞBP or ΞLASSO, and recall the definition of Ξ“ from Definition 4.3 and that the
parameter α P Q satisfy 0 ď α ă κ.

Proof of (III): Let Γ: ΩM Ñ BκpΞM pΩM qq be an algorithm that is within the α-range of ΞM as per
Definition 1.11. First, we note that by Lemma 4.44 all assumptions (Ai)-(Aviii) of §4.11.1 hold. In particular,
both Proposition 4.38 and 4.39 can be applied.
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Proof of (IIIa) Let ΓE : ΩM Ñ t0, 1u be an algorithm that always halts. We proceed to prove that there
exist infinitely many Φ P ΩM such that ΓEpΦq ‰ ΞEΓ pΦq. Since assumptions (Ai)-(Avii) from §4.11.1 hold,
we can use Proposition 4.38 to see that there exists m P N such that tφmi u

k
i“1 P ΩM

ΓEptφmi u
k
i“1q ‰ ΞEΓ ptφ

m
i u

k
i“1q,

as defined as in Lemma 4.33. This shows that there exists an input on which ΓE hallucinates. The argument
that there are infinitely many such inputs is identical to the one in part (II) of Theorem 4.23: if there were
only finitely many, they could be hardcoded as exceptional cases to form a new algorithm that would never
hallucinate, yielding a contradiction with Proposition 4.38. This concludes the first part of (IIIa).

Now let ΓE,O : ΩE,O Ñ t0, 1u be an algorithm that always halts for the exit-flag problem associated
to Γ with an oracle for ΞM . We proceed to prove that there exist infinitely many pΦ, yq P ΩE,O such that
ΓE,OpΦ, yq R ΞE,OΓ pΦ, yq. Since assumptions (Ai)-(Aviii) from §4.11.1 hold, by Proposition 4.39 there exist

m P N and y P ΞM ptφmi u
k
i“1q such that ΓE,Optφmi u

k
i“1, yq R ΞE,OΓ ptφmi u

k
i“1, yq,

and thus ΓE,O hallucinates on input Φ as per Definition 1.8. The argument that there are infinitely many such
inputs on which ΓE,O hallucinates is identical to the one above: if there were only finitely many, they could
be hardcoded as exceptional cases in a new algorithm that would never hallucinate, yielding a contradiction.
This concludes the proof of (IIIa).

Proof of (IIIb): Let ΩM0 Ď ΩM be any subset, and assume ΓE,ran : ΩM0 Ñ t0, 1u is a probabilistic Turing
machine such that

P
`

ΓE,ranpΦq “ ΞEΓ pΦq
˘

ą
1

2
(4.30)

holds for every Φ P ΩM0 . Applying Proposition 4.30, point (1), to the single-valued computational problem
tΞEΓ ,Ω

M
0 , t0, 1u,ΛMu and the Probabilistic Turing machine ΓE,ran, there must exist a deterministic Turing

machine ΓE that always halts such that ΓEpΦq “ ΞEΓ pΦq for every Φ P ΩM0 . This concludes the proof
of the first part of (IIIb). Now, by contradiction, assume that there exists a probabilistic Turing machine
ΓE,ran : ΩM Ñ t0, 1u such that (4.30) holds for every Φ P ΩM . Then, taking ΩM0 “ ΩM in the above part,
there exists a deterministic Turing machine ΓE : ΩM Ñ t0, 1u that always halts such that ΓEpΦq “ ΞEΓ pΦq

for every Φ P ΩM . However, this contradicts part (IIIa) from this Theorem. Thus, no such probabilistic
Turing machine ΓE,ran can exist and the proof of (IIIb) is completed.

Proof of (IIIc): By contradiction, assume that there exists a probabilistic Turing machine ΓE,O,ran :

ΩE,O Ñ t0, 1u that always halts such that

P
´

ΓE,O,ranpΦ, yq P ΞE,OΓ pΦ, yq
¯

ą 1{2, @ pΦ, yq P ΩE,O.

We now apply Proposition 4.30, point (1) to the single-valued problem tΞE,OΓ ,ΩE,O, t0, 1u,ΛOu and to
the Probabilistic Turing machine ΓE,O,ran. This guarantees that there exists a deterministic Turing machine
ΓE,O : ΩE,O Ñ t0, 1u such that

@pΦ, yq P ΩE,O we have ΓE,OpΦ, yq P ΞE,OΓ pΦ, yq.

This, however, contradicts the result from part (IIIa). We have now completed the proof of (IIIc).
Proof of (IV): The following proof utilises a technique originated in [64] and revised throughout the

literature, such as in [35] where Gödel-like theorems are proven via Hilbert’s 10th Problem. Assume that
ZFC is Σ1-sound, and consider the standard model of arithmetic. Recall that the hypothesis that ZFC is
Σ1-sound implies that ZFC is consistent (since an inconsistent theory can prove everything, even false Σ0

1

statements, and thus cannot be Σ1-sound). We now proceed to construct the class of inputs Ω̂ Ď ΩM and the
algorithm Γ: Ω̂ Ñ BκpΞM pΩM qq mentioned in the statement of (IV). Before doing so, we will prove some
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auxiliary claims. By Lemma 4.44, the assumptions of Lemma 4.33 are met and thus we can consider the set

G– tm P N | tφmi uki“1 does not correspond to ι0u

where ttφmi u
k
i“1umPN Ď ΩM is defined as in Lemma 4.33.

Claim (A): G is recursively enumerable but not decidable.
Proof of Claim (A): G is recursively enumerable for the following reason: by Lemma 4.43, m P G if

and only if there is an nm P N such that |φm1 pnmq ´ φm2 pnmq| ą 2 ¨ 2´nm . Therefore, G is recursively
enumerable because, for every m P N, one can repeatedly compute the difference δ – |φm1 pnq ´ φm2 pnq|

over n P N, checking whether or not δ exceeds 2 ¨ 2´n for sufficiently large n – thus certifying that m P G –
and otherwise not halting. Explicitly, we have that

G “ tm P N | Dn P N such that |φm1 pnq ´ φ
m
2 pnq| ą 2 ¨ 2´nu,

which is clearly a recursively enumerable set. However, G, it is not decidable. To see this, suppose (by
contradiction) that there is an algorithm ΓG : N Ñ t0, 1u such that ΓGpmq “ 1 if m P G and ΓGpmq “ 0

if m R G. Then the computational problem tΞM , ttφmi u
k
i“1umPN,M,ΛMu can be solved by the following

algorithm Γs : ttφmi u
k
i“1umPN ÑM:

Construction of Γs: on input tφmi u
k
i“1, Γs acts as follows:

(Step 1) if ΓGpmq “ 0, then return Γsptφmi u
k
i“1q– y1 ;

(Step 2) otherwise if ΓGpmq “ 1, then run the routine Γ˚ from Lemma 4.43 on tφmi u
k
i“1, and return

Γsptφmi u
k
i“1q– Γ˚ptφmi u

k
i“1q.

We claim that the algorithm Γs is such that Γsptφmi u
k
i“1q P BκpΞM ptφmi uki“1qq for every m P N. Fix m P N

so that one of the following two cases occurs:
Case (i): if Ξ“ptφmi u

k
i“1q “ ι0 (i.e., tφmi u

k
i“1 corresponds to ι0) then m R G and thus ΓGpmq “ 0. In

this case, Γs outputs y1 and, by the construction as in §4.12.4 (and in particular Lemma 4.44) we know that
y1 P BκpΞpι0qq “ BκpΞM ptφmi uki“1qq. Thus Γsptφmi u

k
i“1q “ y1 P BκpΞM ptφmi uki“1qq as desired.

Case (ii): if Ξ“ptφmi u
k
i“1q ‰ ι0 (i.e., tφmi u

k
i“1 does not correspond to ι0) thenm P G and thus ΓGpmq “

1. In this case, Γs behaves in the same way as the algorithm Γ˚ from Lemma 4.43 - in particular, Γs satisfies
the result of Lemma 4.43, (ii). This leads to the desired conclusion that Γsptφmi u

k
i“1q P BκpΞM ptφmi uki“1qq.

Therefore, under the assumption that G is decidable, we have constructed the algorithm Γs, such that
Γsptφmi u

k
i“1q P BκpΞM ptφmi uki“1qq for every m P N, thus solving the computational problem

tΞM , ttφmi u
k
i“1umPN,M,ΛMu.

On the other hand, by Lemma 4.44, we can apply Proposition 4.37 to get the existence of m P N such that
dMpΓ

sptφmi u
k
i“1q,Ξ

M ptφmi u
k
i“1qq ą κ. This is a contradiction so that G is not decidable. This concludes

the proof of Claim (A).
Claim (B): There exist m0 P N such that it is true that m0 R G in the standard model of arithmetic, but it

is not provable that ‘m0 R G’ within ZFC (assuming ZFC is consistent).
Proof of Claim (B): We will argue by contradiction, after making two preliminary observations. First,

note that for every m P N, if it is true that m P G in the standard model, then there is a proof in ZFC of
the statement ‘m P G’. In fact, the statement ‘m P G’ is a Σ0

1-sentence (since G is recursively enumerable
by Claim (A)) and ZFC can prove any true Σ0

1-sentence. Consequently, if m P N is such that m P G in
the standard model, then there is no proof in ZFC of the statement ‘m R G’ by the assumption that ZFC is
consistent (otherwise, there would both be a proof of ‘m P G’ and of its negation‘m R G’, contradicting
consistency). Secondly, note that by one of the standard equivalent definitions of recursively enumerable
set, the set G (which is recursively enumerable by Claim (A)) can be enumerated, meaning that there is a
procedure ΓEn : NÑ G that is surjective. On the other hand, since ZFC is an effectively axiomatised theory,
there is an algorithm ΓPS : NÑ ttheorems provable in ZFCu that searches through proofs to enumerate all
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theorems provable in ZFC. We can thus consider the algorithm Γ1 : N Ñ t1, 0u given by the following
construction.

Construction of Γ1: on input m P N, Γ1 acts as follows: initialise t “ 1, then:

(Step 1) if ΓEnptq “ m, Γ1 halts and returns 1;
(Step 2) if ΓPSptq “ ‘m R G’, Γ1 halts and returns 0;
(Step 3) if neither of these conditions are met then the loop continues by incrementing t and executing the
next iteration from Step 1.

Armed with the algorithm Γ1, we can prove Claim (B). Assume by contradiction that, for every m P N such
that m R G in the standard model, the sentence ‘m R G’ is provable in ZFC. Then the algorithm Γ1 above
would decide the set G: in fact, on input m1 P N, there are only two possible cases.

Case (i): m1 P G in the standard model. Then as observed before there exists no proof within ZFC of
‘m1 R G’ (due to consistency and provability of the true Σ0

1-statement ‘m1 P G’). Therefore, Γ1 cannot halt
at Step 2. On the other hand, since G is enumerable there exists t P N such that ΓEnptq “ m1. Thus Γ1 halts
at Step 1 and returns 1, correctly deciding that m1 P G.

Case (ii): m1 R G in the standard model. Then m1 will not appear in the enumeration given by ΓEn, and
thus Γ1 cannot halt at Step 1. On the other hand, we are assuming for the sake of contradiction that there
exists a proof in ZFC of ‘m1 R G’, so that there exists t P N such that ΓPSptq “ ‘m1 R G’. Therefore, Γ1

halts at Step 2 and returns ‘no’, correctly deciding that m1 R G.
Therefore, the algorithm Γ1 decides the set G in the standard model. We have thus shown, under the

assumption that for every m P N such that m R G in the standard model the sentence ‘m R G’ is provable
in ZFC, that there is an algorithm that decides the set G in the standard model. But if such an algorithm
really existed, then ZFC would prove the existence of that algorithm because ZFC is Σ1-complete. We have
already shown via Claim (A) that ZFC proves that no such algorithm exists, and thus we have reached a
contradiction by the assumption on the consistency of ZFC. Therefore, there must be m0 P N such that it is
true that m0 R G in the standard model, but the sentence ‘m0 R G’ is not provable in ZFC. This concludes
the proof of Claim (B).

Claim (C): It is not provable that ‘m0 P G’ within ZFC (assuming that ZFC is Σ1-sound).
Proof of Claim (C): Consider the sentence ‘m0 P G’: this is a Σ0

1 sentence (G being recursively enu-
merable by Claim (A)). Since we are assuming that ZFC is Σ1-sound, if ‘m0 P G’ could be proven, then it
would be true in the standard model. However, we know from the definition of m0 that ‘m0 P G’ is false in
the standard model. Therefore, the sentence ‘m0 P G’ cannot be proven. This concludes the proof of Claim
(C).

In conclusion, the sentence ψ – ‘m0 R G’ is such that ZFC cannot prove either ψ nor  ψ, while the
interpretation of ψ is true in the standard model of arithmetic. Let Φ0 – tφm0

i uki“1 P ΩM be the code
indexed by m0. By Claim (B), we know that m0 R G, and from the definition of G it follows that Φ0

corresponds to ι0, i.e. Ξ“pΦ0q “ ι0. Therefore, from Claims (B) and (C), we have shown that it is true that
Φ0 corresponds to ι0, but it is not provable that Φ0 corresponds to ι0, nor that Φ0 does not correspond to ι0.

We now proceed to construct the set Ω̂ Ď ΩM mentioned in statement (IV) of Theorem 4.24. For every

ι P Ωztι0u Ď QN2 ˆQN2ˆN1

consider the code Φι – pΦι1,Φ
ι
2, . . . ,Φ

ι
kq P ΩM such that its i-th component is the constant Turing machine

Φιipnq– fipιq P Q for every n P N and i P t1, . . . , ku. Finally, define

Ω̂ – tΦι | ι P Ωztι0uu Y tΦ0u.

From Lemma 4.33 and Definition 4.2 it follows that Ω̂ is a subset of ΩM .
Now, we proceed to construct the algorithm Γ: Ω̂ Ñ BκpΞM pΩM qq mentioned in statement (IV) of

Theorem 4.24.
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Construction of Γ: on input Φ “ pΦ1,Φ2, . . . ,Φkq P Ω̂, Γ acts as follows:

(Step 1) if Φ “ Φ0, then return ΓpΦq– 1
2 py

1 ` y2q ;
(Step 2) if Φ1p1q ą Φ2p1q, then return ΓpΦq– y1;
(Step 3) if Φ1p1q ă Φ2p1q then return ΓpΦq– y2.

Recall that the precise definition of y1 and y2 depends on whether the problem is ΞLP, ΞBP or ΞLASSO as
in §4.12.4. Now that Ω̂ and Γ are defined and using Claims (A) through (C), we begin proving (IVa), (IVb)
and (IVc) from the statement of Theorem 4.24.

Proof of (IVa): We now prove that, in the standard model, for every ι P Ω there exists exactly one Φ P Ω̂

corresponding to ι. This follows directly from the definition of Ω̂ given by

Ω̂ “ tΦι | ι P Ωztι0uu Y tΦ0u.

More explicitly, note that for every ι ‰ ι0, Φι corresponds to ι by Definition 4.2 (and again, by that same
definition, the correspondence is unique) whilst we have already shown that Φ0 corresponds to ι0 in the
standard model. This concludes the proof of (IVa).

Proof of (IVb): We now prove that in the standard model, for all Φ P Ω̂, the statement ΓpΦq P ΞM pΦq

holds. For every Φ P Ω̂, there are three possible cases.
Case (i): Φ “ Φ0. In this case, by construction of Γ, we have ΓpΦq “ 1

2 py
1` y2q. Since Φ0 corresponds

to ι0 in the standard model, we know that ΞM pΦ0q “ Ξpι0q “ S0 where S0 is the line segment connecting
y1 and y2 as per the setup of §4.12.4 and Lemmas 4.40, 4.41 and 4.42. Thus ΓpΦq “ 1

2 py
1 ` y2q P Ξpι0q “

ΞM pΦq as desired.
Case (ii): Φ1p1q ą Φ2p1q. In this case, by construction of Γ, we have ΓpΦq “ y1. Moreover, from

the definition of Ω̂, we know that Φip1q “ fipιq for every i P t1, . . . , ku, where ι P Ω is the unique input
such that Φ corresponds to ι. In particular, from the order of Λ “ tfiu

k
i“1 as in §4.12.4, we know that

ι “ pb, Upu1, u2qq with u1 ą u2. Then, from Lemmas 4.40, 4.41 and 4.42 and the definition of y1 in
§4.12.4, we see that y1 P Ξpιq. Therefore, ΓpΦq “ y1 P Ξpιq “ ΞM pΦq as desired.

Case (iii) Φ1p1q ą Φ2p1q. In this case, by construction of Γ, we have ΓpΦq “ y2. Moreover, from
the definition of Ω̂, we know that Φip1q “ fipιq for every i P t1, . . . , ku, where ι P Ω is the unique input
such that Φ corresponds to ι. In particular, from the order of Λ “ tfiu

k
i“1 as in §4.12.4, we know that

ι “ pb, Upu1, u2qq with u1 ă u2. Then, from Lemmas 4.40, 4.41 and 4.42 and the definition of y2 in
§4.12.4, we see that y2 P Ξpιq. Therefore, ΓpΦq “ y2 P Ξpιq “ ΞM pΦq as desired.

To conclude that (i)-(iii) are all the possible cases, note that if Φ P Ω̂ is such that Φ ‰ Φ0, then it is not
possible that Φ1p1q “ Φ2p1q. In fact, by the definition of Ω̂, we have Φ1p1q “ f1pιq and Φ2p1q “ f2pιq,
where ι is the input corresponding to Φ; and by the definition of Ω as in §4.12.4 we know that f1pιq “ f2pιq

if and only if ι “ ι0, and the unique code in Ω̂ that corresponds to ι0 is Φ0. Thus Φ1p1q ‰ Φ2p1q for
every Φ P Ω̂ztΦ0u. Therefore, we have proven that in the standard model, for all Φ P Ω̂, the statement
ΓpΦq P ΞM pΦq holds. This concludes the proof of (IVb).

Proof of (IVc):We now proceed to show that it is impossible to prove that ΓpΦ0q P ΞM pΦ0q and that
ΓpΦ0q R ΞM pΦ0q within ZFC. We will do so by showing that a proof of either of these statements would
also prove that Φ0 corresponds to ι0 or that Φ0 does not correspond to ι0, both of which were shown to be
unprovable in Claims (B) and (C). Recall that m0 P N is such that Φ0 “ tφm0

i uki“1.
Claim (D): ZFC proves that ‘ΓpΦ0q P ΞM pΦ0q’ is equivalent to ‘m0 R G’.
Proof of Claim (D): From the construction of Γ, we have that ΓpΦ0q “ 1

2 py
1 ` y2q. Thus, ‘ΓpΦ0q P

ΞM pΦ0q’ is equivalent to ‘ 1
2 py

1` y2q P ΞM pΦ0q’. Recall from Definition 4.2 that the Markov mapping ΞM

is defined for every Φ P ΩM as ΞM pΦq “ ΞpιΦq, where ιΦ P Ω is the unique input such that Φ corresponds
to ιΦ. Therefore, ‘ 1

2 py
1` y2q P ΞM pΦ0q’ is equivalent to ‘Φ0 corresponds to ιΦ0 and 1

2 py
1` y2q P ΞpιΦ0q’.

From the definition of Ω “ ΩN1,N2
as in equation (4.6) and from Lemmas 4.40, 4.41 and 4.42, we see that

1
2 py

1 ` y2q P Ξpιq if and only if ι “ ι0. Therefore, ‘Φ0 corresponds to ιΦ0 and 1
2 py

1 ` y2q P ΞpιΦ0q’ is
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equivalent to ‘Φ0 corresponds to ι0’. From the definition of m0 and G, we have that ‘Φ0 corresponds to ι0’
is equivalent to ‘m0 R G’. By the transitive property of equivalence, this concludes the proof of Claim (D).

As a consequence of Claim (D), the statement ‘ΓpΦ0q P ΞM pΦ0q’ is provable in ZFC if and only if
‘m0 R G’ is provable in ZFC; and by considering their negations,‘ΓpΦ0q R ΞM pΦ0q’ is provable in ZFC if
and only if ‘m0 P G’ is provable in ZFC.

The conclusion of (IVc) now follows easily. In fact, Claim (B) guarantees that ‘m0 R G’ is not provable
within ZFC, and Claim (C) guarantees that ‘m0 P G’ is not provable within ZFC. Thus the statements and
‘ΓpΦ0q P ΞM pΦ0q’ and ‘ΓpΦ0q R ΞM pΦ0q’ are not provable in ZFC either. This concludes the proof of
(IVc), thus the proof of (IV), and therefore of Theorem 4.24. �

Proof of Theorem 4.26, CRP (V). As in the proof of 4.23, consider the setup of §4.6.1 and the solution map-
pings ΞLP, ΞBP and ΞLASSO, corresponding to the (LP), (BP) and (LASSO) problems respectively. Let
θ P r1{8, 1{4s X Q be arbitrary, and consider the input set Ω “ ΩN1,N2pθq defined in (4.6). The proof is
almost identical for the mappings ΞLP, ΞBP and ΞLASSO. Therefore we will use Ξ to denote any of them as
appropriate and only mention where this particular choice leads to small differences in the argument. Indeed,
let S1, S2, S0, tι1nunPN, tι2nunPN, ι0, y1 and y2 be defined as in §4.12.4, depending on the choice of either
ΞLP, ΞBP or ΞLASSO, and recall the definition of Ξ“ from Definition 4.3.

Proof of (Va): By Definition 4.2, ΞM is multivalued precisely at those codes Φ that correspond to inputs
ιΦ at which Ξ itself is multivalued. From Lemmas 4.40, 4.41 and 4.42 about the solutions of Ξ, and from
the construction of the input set Ω “ ΩN1,N2 as in (4.6), we see that Ξ is multivalued only at the input ι0

defined in (4.26). Since Ξ˚ is the function that takes the value 1 precisely on those inputs on which ΞM

is single-valued and 0 otherwise, we conclude that Ξ˚pΦq “ 0 if and only if Φ corresponds to ι0. This
concludes the proof of (Va).

In order to prove (Vb) and (Vc), we will make use of conclusions (1) and (2) respectively of Theorem 3.8.
Note that, by (Va), we have

Ω˚1 – pΞ˚q´1p1q “ tΦ P ΩM | ΞM is single-valued at Φu

“ tΦ P ΩM | Φ does not correspond to ι0u “ ΩMzpΞ“q´1pι0q.

To prove (Vb) we will show that both (2a) and (2b) from Theorem 3.8 hold; whereas to prove (Vc), we will
show that (2a) does not hold. From this, we will deduce the desired conclusions.

Proof of (Vb): First, we show that (2a) holds, namely that

tΞ˚,ΩM , t0, 1u,ΛMu P ΣA1 .

Explicitly, we proceed to construct a sequence tΓ̃nunPN of algorithms Γ̃n : ΩM Ñ t0, 1u such that Γ̃npΦq Õ

Ξ˚pΦq for every Φ P ΩM and such that the map pn,Φq ÞÑ Γ̃npΦq is recursive. We recall that, by (Va),
Ξ˚pΦq “ 0 if and only if Φ corresponds ι0, otherwise Ξ˚pΦq “ 1.

Our definition of Γ̃n relies on Lemma 4.43. Indeed, For every n P N, we define Γ̃n : ΩM Ñ t0, 1u given
by

Γ̃npΦq–

$

&

%

1 if Γ˚pΦq halts before at most n steps have occurred

0 otherwise
.

We now verify that Γ̃n Õ Ξ˚. For any arbitrary Φ P ΩM , we distinguish between two cases:
Case (i): If Φ corresponds to ι0, then as noted in conclusion (i) of Lemma 4.43, Γ˚pΦq does not halt; thus

Γ̃npΦq “ 0 for every n P N. Moreover, Ξ˚pΦq “ 0 as Ξ is multi-valued on ι0. Therefore limnÑ8 Γ̃npΦq “

0 “ Ξ˚pΦq and Γ̃npΦq “ 0 “ Γ̃n`1pΦq for every n P N, as desired.
Case (ii): If Φ corresponds to ι ‰ ι0, then by conclusion in (ii) of Lemma 4.43, Γ˚pΦq halts. In particular,

there exists an nmin so that Γ̃npΦq “ 1 for all n ě nmin and Γ̃npΦq “ 0 for all n ă nmin. Moreover,
Ξ˚pΦq “ 1 as Ξ is single-valued on ι. Therefore limnÑ8 Γ̃npΦq “ 1 “ Ξ˚pΦq and Γ̃npΦq ď Γ̃n`1pΦq ď
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1 “ Ξ˚pΦq for every n P N, as desired. This concludes the verification that Γ̃n Õ Ξ˚. Furthermore, it is
easy to see that the map pn,Φq ÞÑ Γ̃npΦq is recursive. So tΞ˚,ΩM , t0, 1u,ΛMu P ΣA1 and thus we have
verified that condition (2a) of Theorem 3.8 holds.

Secondly, we prove that condition (2b) of Theorem 3.8 also holds. Consider the restriction of Γ˚ to
Ω˚1 Ñ M. Since Ω˚1 – pΞ˚q´1p1q we see that Ω˚1 is the set of those Φ that do not correspond to ι0. By
conclusion (ii) of Lemma 4.43 we deduce that Γ˚pΦq P BκpΞM pΦqq for every Φ P Ω˚1 . Thus we have
verified condition (2b).

Since both (2a) and (2b) of Theorem 3.8 hold, by statement (2) of Theorem 3.8, there exists a κ-
trustworthy AI with ‘giving up’ parameter tΓnunPN (where Γn : Ω Ñ M Y t‘I don’t know’u for every
n P N) such that Ξ˚ “ ΞI

tΓnu
. This gives the first part of the desired statement (Vb).

Proof of (Vc): We use the equivalence guaranteed by (1) of Theorem 3.8. We now show that (1a) does
not hold, namely that

tΞ˚,ΩM , t0, 1u,ΛMu R ∆A
0 .

Suppose, by contradiction, that tΞ˚,ΩM , t0, 1u,ΛMu P ∆A
0 . Then there exists an algorithm Γ0 : ΩM Ñ

t0, 1u such that Γ0pΦq “ Ξ˚pΦq for every Φ P ΩM . In particular, by (Va) and the fact that Ξ˚ is the
indicator function of those codes on which ΞM is single-valued, we deduce that Γ0pΦq “ 0 if and only if Φ

corresponds to ι0, and Γ0pΦq “ 1 otherwise.
Once again, recall the routine Γ˚ from Lemma 4.43. Construct the following algorithm Γs : ΩM ÑM:

ΓspΦq–

$

&

%

Γ˚pΦq if Γ0pΦq “ 1

y1 if Γ0pΦq “ 0,

where y1 is given as in either (4.27), (4.28) or (4.29) depending on the solution map ΞLP, ΞBP or ΞLASSO

respectively. Recall that by §4.12.4 (and in particular, Lemma 4.40, Lemma 4.41 or Lemma 4.42 depending
on the solution map) that y1 P Ξpι0q.

We claim that the algorithm Γs solves the computational problem tΞM ,ΩM ,M,ΛMu. In fact, if Φ

corresponds to ι0, then Γ0pΦq “ Ξ˚pΦq “ 0 and thus ΓspΦq “ y1 P Ξpι0q “ ΞM pΦq. On the other hand,
if Φ does not correspond to ι0, then Γ0pΦq “ Ξ˚pΦq “ 1 and thus ΓspΦq “ Γ˚pΦq P BκpΞM pΦqq by
conclusion (ii) of Lemma 4.43. Thus, Γs solves the computational problem tΞM ,ΩM ,M,ΛMu. However,
this contradicts conclusion (II) of Theorem 4.23. Therefore, there does not exist any such algorithm Γ0, and

tΞ˚,ΩM , t0, 1u,ΛMu R ∆A
0 .

This proves that condition (1a) of Theorem 3.8 does not hold. From the equivalence guaranteed by statement
(1) of Theorem 3.8, it follows that there does not exists any κ-trustworthy AI of the form Γ: Ω Ñ M Y

t‘I don’t know’u such that Ξ˚ “ ΞI
Γ. We have thus proven the statement of (Vc). Therefore, the proof of

CRP (V), and thus of Theorem 4.26, is complete. �

4.15. Proof of Theorem 4.9. For the convenience of the reader we restate Theorem 4.9 here.

Theorem 4.9 (The problems in the CRP are strictly easier than the halting problem). Consider the setup of
§4.6.1, and the computational problem tΞM ,ΩM ,M,ΛMu from Definition 4.2. Let T “ tϕ1, ϕ2, . . . u be
the set of all Turing machines that map N to Q. When considering the halting problem from Definition 4.8,
the following holds.

(I) tΞM ,ΩM ,M,ΛuO,Ξ
H

P ∆A
0 . That is, one can compute ΞM when given access to an oracle for the

Halting problem.
(II) However, the Halting problem with an oracle for ΞM , given by

tΞH , T , t0, 1u,ΛHuO,Ξ
M

(see Definitions 4.2, 4.8 and 4.7) satisfies tΞH , T , t0, 1u,ΛHuO,ΞM R ∆A
0 .
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Proof of Theorem 4.9. The proof of this Theorem relies on Proposition 4.34 and Lemma 4.43. Although the
Halting problem in §4.3 is defined to work on Turing machines that take a single input, we shall consider the
equivalent task of calculating the Halting problem for Turing Machines with k input tapes, where k is the
dimension of Ω as specified in §4.6.2. In particular, we treat ΞH : T ˆ Nk Ñ t0, 1u to be the map

ΞHpϕ, n1, n2, . . . , nkq “ 1 if ϕpn1, n2, . . . , ndq Ò

ΞHpϕ, n1, n2, . . . , nkq “ 0 if ϕpn1, n2, . . . , nkq Ó .

We start by proving (I). We define the map τ : ΩM Ñ T ˆ Nk so that for, Φ “ pΦ1,Φ2, . . . ,Φkq P ΩM

as per Definition 1.16, τpΦq is the pair Γ˚ ˆ pxΦ1y, xΦ2y, . . . , xΦkyq where Γ˚ is the algorithm from Lemma
4.43. Note that τ is computable: this follows immediately since the Gödel number of Γ˚, given by xΓ˚y, is
a fixed number for any particular implementation of Γ˚. We next define the algorithm Γ : ΩM Ñ M as
follows:

Construction of Γ: On input Φ P ΩM and y P ΞHpΦ, pΓ˚,Φqq, the algorithm Γ acts as follows

(Step 1) If y “ 0 output y1.
(Step 2) Otherwise, if y “ 1, calculate Γ˚pΦq.

This algorithm is correct: indeed, if Φ corresponds to ι0 then by Lemma 4.43, part (i), Γ˚pΦq Ò. Thus the
algorithm Γ exits with output y1 and thus ΓpΦ, yq “ y1 P ΞM pΦq by Lemmas 4.40, 4.41 and 4.42. If instead
Φ does not correspond to ι0, then Γ˚pΦq P ΞM pΦq by Lemma 4.43, part (ii).

Next, we prove (II). Assume otherwise, that is, there exits an algorithm ΓO such that ΓOpΦ, yq P

ΞM,O
1 pΦ, yq for every pΦ, yq P ΩO

1 , for the sake of contradiction. We will check that each of the assumptions
of Proposition 4.34 hold. Indeed, both (a) and (b) hold by an application of Lemma 4.44. Assumption (c) that
Ξ1 is single-valued is trivial by the definition of ΞH provided in Definition 4.8. Finally, assumption (d) is the
initial assumption made for the purposes of obtaining a contradiction. We can thus employ Proposition 4.34
to see that there is an algorithm Γ: T ˆNÑ t0, 1u such that Γpϕ, nq “ ΞHpϕ, nq for every pϕ, nq P T ˆN.
But this algorithm would solve the halting problem, which is the desired contradiction. �

5. QUANTIFYING THE CRP – CONSTRUCTING SPECIFIC FAILURE SENTENCES FOR AI

In this section, we provide concrete examples for which the CRP occurs. Indeed, as mentioned in Remark
2.5, as well as in §“The Consistent Reasoning Paradox (CRP) - A stronger CRP II: Failure sentences and
equivalence” on page 4 of the main part of the paper and in §“Stronger statements – Quantifying the CRP”
on page 7 of the Methods section, our proof techniques allow us to provide explicit examples of inputs
on which any AGI will fail. We now provide a collection of such examples - out of the infinitely many -
that induce the failure mentioned in CRP II. Moreover, we quantify the lengths of such inputs (in terms of
the number of characters) to show that the questions for which the CRP applies are not exotic, or abstract
examples of potentially unbounded length. In particular, these failure sentences for the AGI occur by creating
a sentence that is only a small number of additional characters plus the length of the code of the AGI itself.
The provided codes are not intended to be the optimal minimum length possible, but rather they are designed
to showcase the techniques required to induce the failure mentioned in the CRP in a clear way.

Remark 5.1 (Language-specific examples). In this section, we provide explicit language-specific examples
of inputs that will make any AGI fail, meaning that they depend on an arbitrary choice of a programming
language in which the codes are written. For reasons that will be further elaborated later, we provide ex-
amples of codes written in MATLAB, but they could also be implemented in one’s favourite programming
language - such as C or Python.

Assumption on the AGI: We now briefly discuss the type of AGI we will be considering. Similarly to
modern chatbots, such AGI takes as input a string describing a problem, and returns a candidate solution to
the problem under consideration. Explicitly, denoting by A the alphabet of Unicode characters and by A˚
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the set of strings of such alphabet, the AGI will be defined on a collection C Ď A˚ of strings that describe
‘well formed’ questions; we will not specify the boundaries of such a class C – as such a task could be open
to debates –, but simply make the minimal assumption that it contains at least the family of strings

CLP – tΦpd,mq | d P N, m MATLAB codequ Ď C Ď A˚ (5.1)

where for every d P N and m code for a MATLAB function, Φpd,mq is defined as follows. The string
Φpd,mq is specified by inserting a specific numerical value for d in place of ‘[insert numerical value of
d]’, by providing a MATLAB code m in place of ‘[insert MATLAB code m]’, and by including all the
dependencies of the code m in place of ‘[insert codes of the dependencies of the code m]’ in the following
string :

Φpd,mq – “Consider the integer dimension d “ [insert numerical value of d]. Provide an
approximation within κ “ 10´1 in the } ¨ }8 norm of a minimiser of the following Linear
Programming problem

min
xPRd

xx, cy, such that Ax “ y, x ě 0 (LP)

where c “ 1d P Qd is the d-dimensional vector with 1 in each entry, y “ 2κ “ 2 ¨ 10´1,
and the input A P Q1ˆd is given as follows.

The input A P Q1ˆd is given via the following computer code: calling the MATLAB
code [insert MATLAB code m] with parameter pn, i, dq will give the ith coordinate of A to
accuracy 2´n , provided i ď d. You are also given access to all the dependencies for the
previous MATLAB code: [insert dependencies for the code m]. ”.

In a similar way to the notion of correspondence as in Definition 4.2, we say that the question Φpd,mq

corresponds to ι “ p2 ¨ 10´1, Aq P Q ˆ Q1ˆd if calling the MATLAB code m on input pn, i, dq returns a
2´n approximation to the ith coordinate of A P Q1ˆd.

The AGI under consideration is thus a function Γ: C Ñ
Ť

dPN Qd YM1, where C Ě CLP and M1 is the
set of candidate solutions to the problems in CzCLP. We will mostly focus on the action of the AGI simply
on the class CLP, thus we shall only consider Γ|CLP : CLP Ñ

Ť

dPN Qd.

Remark 5.2 (Dependencies). There are two types of functions that a MATLAB code can call during its
execution: either MATLAB’s native functions, or alternatively non-built-in-functionality. A dependency is a
non-built-in function, script, or file that a MATLAB routine requires for its execution and which is not part
of the MATLAB core library. Dependencies may include user-defined functions and custom scripts, and they
typically must be accessible in the MATLAB path for the routine to run successfully.

Remark 5.3 (The choice of language). Our code operates in MATLAB. This language was chosen due to
its simple parallel functionality (including the ability to recursively start new parallel operations and the
ability to easily terminate running parallel processes) through the Parallel Computing Toolbox and its rich
integration with other languages such as Python, C and C++. Of course, this means our approach applies to
AGIs written in any of these languages; the particular language used for the AGI is unimportant, so long as
the code describing the AGI is given. Moreover, it is easy to see that our approach would generalise to any
modern language that implements multiprocessing, timing and thread termination.

Remark 5.4 (Defensive techniques and input validation). We work under the assumption that the AGI accepts
and returns inputs belonging to the class C, that are assumed to be valid (of the correct type and syntax).
Therefore, there will be no need to employ input validation and defensive programming techniques, such as
fail-safe defaults and exception handling. A secondary motivation for this approach is a desire for concision
and clarity - input validation is not an essential part of the argument and our goal is to showcase the type of
questions relevant to CRP II. It should be noted however that implementing such fail-safe mechanism could
be quickly accomplished with few extra lines of code.



SUPPLEMENTARY MATERIAL 43

The following theorem illustrates the concrete examples of failure sentences for an AGI as mentioned in
CRP II. Explicitly, for any integer K ě 2, we create K questions. The dth such question tasks the AGI with
solving the linear program with input A so that the ith coordinate of A P Q1ˆd is generated by a computer
code and so that y P Q is given by y “ 2κ “ 2 ˆ 10´1. We state our result only for the computational
problem of Linear Programming as in (LP) with one equality constraint, and for the choice of MATLAB
as programming language, but this is simply done for ease of presentation: the same argument can easily
be applied to other computational problems (such as Basis Pursuit and Lasso as in (BP) and (LASSO)) and
other choices of programming language.

As a significant feature, our theorem quantifies the Consistent Reasoning Paradox in the following sense:
it provides an upper bound on the length of failure sentences for an AGI, as mentioned in the statement of
CRP II. We adapt the following notation: we denote by lenpΦq the length of a string Φ P A˚, defined as the
total number of Unicode characters that compose it. Furthermore, given an AGI Γ whose code is expressed
as a string in the MATLAB programming language and contained in a file ‘AGI.m’ (which can call any
auxiliary files that may be written in other languages, such as Python or C), we denote by lenpΓq the sum of
the lengths of the code AGI.m and of its external dependencies.

Theorem 5.5 (Quantifying CRP II for Linear Programming with MATLAB codes). Let A be the Unicode
alphabet and CLP Ď A˚ be the collection of questions as in (5.1). Consider any AGI, defined on a set
of strings C Ď A˚, that takes as input a string describing a problem and returns a candidate solution
to such problem. Assume that C Ě CLP and denote the restriction of the AGI to the collection CLP by
Γ: CLP Ñ

Ť

dPN Qd. Moreover, assume that the code for the AGI is expressed as a string in the MATLAB
programming language – equipped with Parallel Computing Toolbox – and is contained in a file ‘AGI.m’
which can call any auxiliary files that may be written in other languages, such as Python or C.

Then for every integer K P N there exist K questions Φ1, . . . ,ΦK P CLP, each describing a Linear
Programming problem such that

ΓpΦlq is not a correct solution to the problem described by Φl, (5.2)

and lenpΦlq ď lenpΓq ` log10pKq ` ε for every l “ 1 . . . ,K, where ε “ εMATLAB ď 3300 characters.

Remark 5.6 (Language-specific proof). The proof of Theorem 5.5 is an adaptation of the language-free proof
of CRP II (more precisely, the proof of Proposition 4.37) to the specific case of the MATLAB language. The
original proof was language-free, and thus Turing machines were accessed via their Gödel numbers and
procedures were considered to be defined on such numbers. On the other hand, the following proof will be
specific to the (arbitrarily chosen) programming language MATLAB, and will consider routines that access
the MATLAB codes directly, rather then their Gödel numbers. It is clear that, by choosing another language
instead of MATLAB, the proof of Theorem 5.5 would remain mostly unchanged and the only difference
would be the precise value of the constant ε.

Proof. The proof will be structured in the following way: first, we present the question on which the AGI is
guaranteed to fail, followed by the MATLAB codes that are supplied with the question. Interlaced with the
codes will be explanations describing the algorithms and functions that these MATLAB codes are computing.
Finally, we prove why such questions and codes are guaranteed to make the AGI fail, which is very closely
related to the proof of CRP II and Theorem 4.23.

Fix an integer K P N and l P t1, . . . ,Ku. Let d – l ` 1, and denote by dkdk´1 . . . d2d1 the expansion
of d in base 10. Note that lenpdkdk´1 . . . d2d1q ď log10pdq ` 1 ď log10pK ` 1q ` 1 ď log10pKq ` 2.

The failure sentence Φl for the AGI is the following:
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Question Φl: “Consider the integer dimension d “ dkdk´1 . . . d2d1. Provide an approxim-
ation within κ “ 10´1 in the } ¨ }8 norm of a minimiser of the following Linear Program-
ming problem

min
xPRd

xx, cy, such that Ax “ y, x ě 0

where c “ 1d P Qd is the d-dimensional vector with 1 in each entry, y “ 2κ “ 2 ¨ 10´1,
and the input A P Q1ˆd is given as follows.
The input A P Q1ˆd is given via the following computer code: calling the MATLAB code

@(maxTime, coordinateIndex, dimension) phi(‘gammaFunc’, maxTime, coordinateIn-
dex, dimension)
with parameter pn, i, dq will give the ith coordinate of A to accuracy 2´n , provided i ď d.
You are also given access to all the dependencies for the previous MATLAB code: gam-
maApprox.m, phi.m, gammaFunc.m, and AGI.m.”.

Note that the failure sentence Φl is induced by the MATLAB code φγ given by:

1 @(maxTime, coordinateIndex, dimension) phi(‘gammaFunc’, maxTime, coordinateIndex,

dimension)

Code φγ , inducing the failure sentence Φl “ Φpd, φγq.

and thus Φl “ Φpd, φγq P CLP where d “ l ` 1. This choice of d guarantees that the number of columns
of the matrix A is at least 2, so that Lemma 4.40 applies.

We will soon proceed to list the codes for the dependencies of φγ , namely gammaApprox.m, phi.m,
gammaFunc.m and AGI.m mentioned in the question above. Such codes are presented in an order so that a
function is called only if it has been previously defined. The reason why the codes are split into different .m
files is the way MATLAB handles functions, requiring each function to be passed as a separate file, with the
exception of gammaApprox.m which we define separately to aid clarity.

Before proceeding to the codes, we illustrate the strategy leading to their design. Recall that the AGI is
defined on (at least) the collection CLP of strings that contains the questions Φpd,mq requesting to solve a
Linear Programming problem (LP) with fixed codomain dimension N2 “ 1 and arbitrary domain dimension
N1 “ d P N, for a specific input. The input to such problem is of the form ι “ p2 ¨ 10´1, Aq P Q ˆ Q1ˆd,
and the coordinates of A P Q1ˆd are determined via the MATLAB code m parametrising the question
Φpd,mq. In particular, provided that d ě 2, it is possible to design MATLAB codes m (together with
their dependencies) that correspond to the inputs ι0, ιjn P Ω1,d (for j P t1, 2u and n P N) as defined in
§4.12.4 for the Linear Programming case with the intention of employing an argument akin to that used in
Proposition 4.37. This is precisely how the following MATLAB codes are designed: they implement certain
auxiliary functions defined in §4, namely gammaApprox.m (which implements Γ̂ as constructed in the proof
of Lemma 4.44), phi.m (which implements tφmi u

d
i“1 for a given string m, as constructed in Lemma 4.33)

and gammaFunc.m (which implements the function γ as in equation (4.22)).
We now proceed to introduce and explain each of the above codes.
Step (I): The code for AGI.m. Firstly, the code AGI.m is the source code for the AGI itself, and thus

depends on the given AGI. Recall that we assume that the code for the AGI is contained in a file ‘AGI.m’
which can call any auxiliary files that may be written in e.g. Python or C (these files are also supplied to the
AGI as part of the question above).

1 function [output] = AGI(string)

2 % Code for the AGI, defined on strings that describe Linear Programming problems, and

returning a candidate solution

3 ...

4 end

Code for the AGI Γ.
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Step (II): The code for gammaApprox.m. We present the code gammaApprox.m. This code computes
the algorithms Γ̂ji and Γ̂0

i mentioned in the proof of Lemma 4.44, which we recall here: these are Γ̂ji :

Nˆ NÑ Q with Γ̂ji pn, rq “ fipι
j
rq, and Γ̂0

i : NÑ Q with Γ̂0
i pnq “ fipι

0q, for i P t1, 2, . . . , du, j P t1, 2u,
and r P N. Recall that fi : Ω1,d Ñ Q is the evaluation function fi P Λ that on input ι P Ω1,d return its ith
coordinate fipιq P Q.

1 function [oValue] = gammaApprox(j, n, t, coordinateIndex)

2 % Returns the coordinateIndex-th entry of the input iota^j_t

3 % (Note that t is irrelevant when j==0)

4 a1 = 1/2;

5 a2 = 1/2;

6 if j == 1

7 a2 = a2 - 4^(-t);

8 elseif j == 2

9 a1 = a1 - 4^(-t);

10 end

11

12 if coordinateIndex == 1

13 oValue = a1;

14 elseif coordinateIndex == 2

15 oValue = a2;

16 elseif coordinateIndex > 2

17 oValue = 0;

18 end

19 end

Code for Γ̂.

It is clear from its construction that the code for Γ̂, on input pj, n, t, iq (where i “ coordinateIndex)
returns the ith coordinate of ιjt if j ‰ 0, or of ι0 if j “ 0, as desired. These outputs are precisely fipι

j
t q “

Γ̂ji pn, tq and fipι0q “ Γ̂0
i pnq respectively, as desired.

Note that, if j “ 0, the parameter t is irrelevant.
Step (III): The code for phi.m. We now proceed to present the code phi.m, which computes the function

φm defined in equation (4.15) of Lemma 4.33. We recall that, for every coordinate index i P t1, . . . , du, the
function φmi : NÑ Q is defined by:

φmi pnq :“

$

’

’

&

’

’

%

Γ̂1
i pn, tq if rm PWpm, tqs ^ rt ď ns ^ rϕmpmq “ 1s;

Γ̂2
i pn, tq if rm PWpm, tqs ^ rt ď ns ^ rϕmpmq “ 2s;

Γ̂0
i pnq otherwise.

We recall again that the parameter m used to represent an integer in Lemma 4.33, namely the Gödel number
of a Turing machine; whereas in the current context, m is the string that encodes a MATLAB routine. We
implement φ as follows, with an explanation of why this represents φ described below:

1 function [approxCoordinateValue] = phi(fileName, maxTime, coordinateIndex, dimension)

2 % Computes phi^m_i(n), which is a 2^(-n-1) approximation to the i-th coordinate of an

input iota determined by the code m

3 % In particular, m = fileName is the file name of a code, i = coordinateIndex is an

integer between 1 and d = dimension, and n = MaxTime gives the accuracy error 2^(-n)

on the input coordinate

4 phiStatus = parfeval(str2func(fileName), 1, dimension, fileName);

5 wait(phiStatus, "finished", maxTime);

6
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7 % If running m on itself hasn’t halted within n steps, set j = 0

8 if ~strcmp(phiStatus.State, "finished") || ~isempty(phiStatus.Error)

9 cancel(phiStatus);

10 pathway = 0;

11 else % Otherwise, m has halted within n steps, so assign j to either 0, 1, or 2

12 outputValue = fetchOutputs(phiStatus);

13 if outputValue == 1 || outputValue == 2

14 pathway = outputValue;

15 else

16 pathway = 0;

17 end

18 % Find the time t it takes for code m to halt on itself (surely t is at most n)

19 timeTaken = seconds(phiStatus.RunningDuration);

20 end

21 if pathway == 0

22 approxCoordinateValue = gammaApprox(0, maxTime, 0, coordinateIndex);

23 % Recall that if j == 0, then t is superfluous

24 else

25 approxCoordinateValue = gammaApprox(pathway, maxTime, timeTaken, coordinateIndex);

26 end

27 end

Code for tφmi u
d
i“1.

The code for φ implements the function φmi pnq on every input pm,n, iq where (for the sake of writing
clear code) m “ fileName is a string, n “ maxTime is a natural number and i “ coordinateIndex

is between 1 and d “ dimension.
Recall from the definition of φmi as in Lemma 4.33 that φmi pnq runs machine m on input m for a certain

number of steps (or amount of time) indicated by n: if the procedure has halted before time n (more pre-
cisely, at time t “ timeTaken ď n) and has returned a value j “ outputValue P t0, 1u, then φmi pnq
correspondingly returns Γ̂pj, n, t, iq; in all other cases – explicitly, if either machine m on input m has not
yet halted before time n, or if it has halted within n seconds but returned an output not in t0, 1u – then φmi pnq
returns Γ̂p0, n, 0, iq.

An extra word needs to be spent on how φ implements ‘running machine m on input m’, and checking if
this procedure ‘has halted by step n’. In the definition of φmi pnq as in equation (4.15), these two properties are
stated respectively by checking the value ofϕmpmq, and by assessing the condition rm PWpm, tqs^rt ď ns,
where the set W is defined precisely by checking how many steps it takes for an algorithm to halt (see §4.9
for a precise definition). However, as noted in Remark 4.32, any function W 1 satisfying properties (Pi) and
(Pii) can be used instead of W to complete the argument. In particular, whilst it was useful to consider the
number of steps of a Turing machine for the theoretical results of §4, here, we instead rely on the amount of
time taken, which is a concept much more relevant to practical implementations of the CRP. Primarily for
that reason the execution ϕmpmq for a code m is implemented via parallel computing as follows:

phiStatus = parfeval(str2func(fileName), 1, dimension, fileName);

In this line, the function parfeval runs the function str2func(fileName) (which returns one output:
hence the value 1 in the call to parfeval) on input m “ fileName and dimension d “ dimension,
running this computation in a parallel thread. The reason for the usage of parallel computation is principally
driven by the need to avoid the main thread stalling; this is particularly important in the case where phi.m
does not terminate while running m on m itself. We can use the command

wait(phiStatus, "finished", maxTime);
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to ensure that the computation finishes within a maximum of maxTime “ n seconds. The code of phi
continues, either because of some failure (e.g. maxTime seconds elapsed or an error was thrown) or because
the execution of ϕmpmq completed. We can check if the former occurred with the following segment of code

if ~strcmp(phiStatus.State, "finished") || ~isempty(phiStatus.Error)

cancel(phiStatus);

pathway = 0;

in which the parallel thread is cancelled and we set j “ 0.
Ultimately, if the thread completes we can measure the time taken using the following command

timeTaken = seconds(phiStatus.RunningDuration);

The lines above, therefore, implement the complement of the condition rm PWpm, tqs ^ rt ď ns.
The rest of the code for phi.m is a straightforward interpretation of the definition of the function φ as in

Lemma 4.33.
Step (IV): The code for gammaFunc.m. We now present the code gammaFunc.m, which implements

the function

γdpmq–

$

&

%

1 if ΓpΦpd, φmqq P BκpS2q;

2 otherwise.
(5.3)

for any d P N and m name of a MATLAB function.
The function γd is a straightforward adaptation of the language-free function γ defined in equation (4.22)

to the current language-specific case of MATLAB and for the LP problem in dimension d.
We recall again that m, in the current context, does not represent an integer but rather the name of a

MATLAB function.

1 function [gammaAnswer, LPAnswer] = gammaFunc(dimension, fileName)

2 codeForAI = cat(2, ’Consider the integer dimension $d= ’, num2str(dimension), ’$.

Provide an approximation within $\kappa = 10^{-1}$ in the $\| \cdot \|_\infty$ norm

of a minimiser of the following Linear Programming problem

3 \[

4 \min_{x \in \R^d} \ \langle x , c \rangle, \ \text{ such that } \ Ax = y, \ x \geq 0

5 \]

6 where $c = \ones_{d}\in \Q^{d}$ is the $d$-dimensional vector with $1$ in each entry,

$y = 2\kappa = 2 \cdot 10^{-1}$, and the input $A \in \Q^{1 \times d}$ is given as

follows.

7 The input $A \in \Q^{1 \times d}$ is given via the following computer code: calling

the MATLAB code @(maxTime,coordinateIndex,dimension) phi(’’’, fileName,’’’,maxTime,

coordinateIndex,dimension) with parameters $(n,i,d)$ will give the $i$th coordinate

of $A$ to accuracy $2^{-n}$ , provided $i \leq d$.

8 You are also given access to all the dipendencies for the previous MATLAB code:

gammaApprox.m, phi.m, ’, fileName,’.m, and AGI.m.’);

9 LPAnswer = AGI(codeForAI);

10 insideBoolean = inBallS2(LPAnswer, 0.1);

11 if insideBoolean

12 gammaAnswer = 1;

13 else

14 gammaAnswer = 2;

15 end

16 end

17

18 function insideBoolean = inBallS2(x, kappa)

19 compVec = zeros(size(x));



48 SUPPLEMENTARY MATERIAL

20 compVec(2) = 4 * kappa;

21 insideBoolean = max(abs(x - compVec)) < kappa;

22 end

Code for γd.

The code for γd is a straightforward implementation of the function γd defined in (5.3) with the ball
BκpS2q assumed to be in the } ¨ }8 norm. Recall from §4.12.4 that in the case of Linear Programming, we
have S2 “ t4κe2u Ď Qd and that κ “ 10´1. On input m, in order to run the equivalent of ΓpΦpd, φmqq, the
code gammaFunc contains the lines (shortened here for sake of brevity):

codeForAI = cat(2, ’Consider the integer dimension’ ... ’, and AGI.m.’);

LPAnswer = AGI(codeForAI);

which passes the string that describes the Linear Programming question Φpd,mq as an input to the AGI.
Step (V): The code φγ . After having introduced all of its dependencies, we finally analyse the MATLAB

code φγ . Recall that it is given by the single line:

1 @(maxTime, coordinateIndex, dimension) phi(‘gammaFunc’, maxTime, coordinateIndex,

dimension)

Code φγ , inducing the failure sentence Φl “ Φpd, φγq where d “ l ` 1.

The code for φγ is an anonymous function - as introduced by the symbol ‘@’ - that on input (maxTime,
coordinateIndex, dimension) calls the function phi on such inputs and with string parameter fixed to m “

‘gammaFunc’. Therefore, the MATLAB code φγ simply computes the function φ‘gammaFunc’. This is straight-
forward code and so we do not discuss its implementation further. This code provides the entry point for the
type of question used in the proof of CRP II (more precisely, it implements Φl “ Φpd, φγq with d “ l ` 1).

Step VI: Verification of (5.2). The verification that the code above will make the AGI fail follows the
same lines of the proof of (II) of Theorem 4.23, and more precisely that of Proposition 4.37. The main
adaptation that needs to be made is that in the current context, Turing machines are not accessed via their
Gödel numbers, but directly by the MATLAB strings that encode them. As has been previously mentioned,
the main difference is therefore that m no longer represents an integer, but rather a code.

The verification that Γ will fail on Φl is a straightforward rewording of the proof of Proposition 4.37 in
the current context, making the syntactical adaptations listed above. For completeness, we provide the full
verification here.

We now proceed to show that ΓpΦlq is not a correct solution to the problem described by Φl. Recall that
the question Φl describes the problem of providing an approximation within κ “ 10´1 to a solution ΞLPpιq

of the Linear Problem as in (LP) with dimensions N1 “ d “ l ` 1 and N1 “ 1, where ι “ py,Aq is such
that Φl corresponds to ι. Thus, we proceed to show that ΓpΦlq R BκpΞLPpιqq. Recall from §4.12.4 the sets
S1, S2 Ď Qd and the inputs ι1n, ι

2
n P Ω1,d, which satisfy ΞLPpι

j
nq P S

j for every n P N and j P t1, 2u, and
are such that BκpS1q X BκpS2q “ H with κ “ 10´1.

To prove the desired conclusion, consider the value of γdp‘gammaFunc’q, where γd is given in (5.3). From
the definition of γd and from the assumption that the AGI Γ must halt when given question Φl “ Φpd, φγq,
returning the output ΓpΦlq “ LPAnswer, the value of γdp‘gammaFunc’q is necessarily either 1 or 2. We
consider these cases separately.

Case (I): Suppose that γdp‘gammaFunc’q “ 1. Consider the execution γdp‘gammaFunc’q. We see that
from Lines 10-14 from gammaFunc.m the vector LPAnswer must be such that the call to inBallS2(LPAnswer,0.1)
evaluates to ‘true’. Examining the code of inBallS2 from Line 18 through to Line 22 of gammaFunc.m shows
us that the vector LPAnswer must be contained in BκpS2q. Note from Lines 2-9 of gammaFunc.m that the
vector LPAnswer “ ΓpΦlq is precisely the output of the AGI to the question Φl “ Φpd, φγq. Therefore, we
have observed that ΓpΦlq P BκpS2q. On the other hand, let us compute the true solution ΞLPpιq where ι is
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such that Φl “ Φpd, φγq corresponds to ι. As analysed previously, φγ computes the function φ‘gammaFunc’,
which provides approximations to an input ι “ p2 ¨ 10´1, Aq P Q ˆ Q1ˆd in the following sense: when
executed on input pn, i, dq, the function φ‘gammaFunc’ returns a 2´n approximation to the ith coordinate of A.
We now proceed to determine ι.

For every pn, i, dq “ pmaxTime, coordinateIndex, dimensionq P N3, Lines 4-5 of phi.m execute the func-
tion γdp‘gammaFunc’q until time n. Since we are assuming that γdp‘gammaFunc’q “ 1, for large enough
time n this procedure will halt. Therefore, for such large values of n, the ‘if’ condition in Lines 8-10 of phi.m
will not be met, and instead we execute the else branch in Line 11 of phi.m. Furthermore, as the procedure
γdp‘gammaFunc’q returns output 1, the variable outputValue will be set to 1 in Line 12 of phi.m. Line 14 of
phi.m then assigns the value j “ pathway “ 1. Finally, Line 25 of phi.m calls the function gammaApprox
with input p1, n, t, iq (where the value of t “ timeTaken is the time taken to run γdp‘gammaFunc’q), thus
returning exactly the ith coordinate Γ̂1

i pn, tq “ fipι
1
t q of the input ι1t as defined in (4.26) in §4.12.4.

We conclude that φ‘gammaFunc’ returns approximations to the coordinates of an input ι1t for some t P N.
Therefore the question Φl corresponds to ι1t . From the setup of §4.12.4 (specifically, Lemma 4.44), we know
that ΞLPpι

1
t q Ď S1 and that BκpS1qXBκpS2q “ H. Recalling that we observed earlier that ΓpΦlq P BκpS2q,

we conclude that ΓpΦlq R BκpΞLPpιqq, as desired.
Case (II): Suppose that γdp‘gammaFunc’q “ 2. The argument in this case is analogous to the previ-

ous case. We note the following differences: in the execution γdp‘gammaFunc’q, Lines 10-14 from gam-
maFunc.m must be such that the call to inBallS2(LPAnswer,0.1) evaluates to ‘false’ rather than ‘true’, and
thus examining the code of inBallS2 from Line 18 through to Line 22 of gammaFunc.m shows us that the
vector LPAnswer must be outside BκpS2q. Thus ΓpΦlq R BκpS2q.

Execution of the MATLAB code φγ proceeds identically, with the only difference being that Line 14 of
phi.m assigns the value j “ pathway “ 2, so that φ‘gammaFunc’ returns approximations to the coordinates of
an input ι2t for some t P N. Thus, the question Φl corresponds to ι2t , From the setup of §4.12.4 it holds that
ΞLPpι

2
t q Ď S2, and since we already observed that ΓpΦlq R BκpS2q, we conclude that ΓpΦlq R BκpΞLPpιqq,

as desired.
Either way, we have proven that ΓpΦlq R BκpΞLPpιqq, so that ΓpΦlq is not a correct solution to the

problem described by Φl. Thus the AGI given by Γ is guaranteed to fail on the question Φl “ Φpd, φγq, and
the verification of (5.2) is complete.

Since d P t1, . . . ,Ku was arbitrary, this proves that there are K codes Φ1, . . . ,ΦK on which the AGI is
guaranteed to fail, for every K ě 2.

Step VII: Checking the length of the failure sentence for the AGI: Finally, for the fixed values of
fixed K P N and d P t1, . . . ,Ku, we compute the length of the question Φl “ Φpd, φγq where we recall
that d “ l ` 1. The number of characters in this question is given by the sum of the lengths of the sep-
arate codes (namely AGI.m and its dependencies, as well as the MATLAB code φγ and its dependencies
gammaApprox.m, phi.m, and gammaFunc.m) and the length of the English sentences appearing in CLP.

Note that the decimal expansion of the dimension d appears in the English sentence ‘Consider the integer
dimension d “ dkdk´1 . . . d2d1’. The contribution to the overall length from including this dimension is at
most log10pdq ` 1, which is bounded from above by log10pK ` 1q ` 1 ď log10pKq ` 2.

The length lenp‘Consider the integer dimension... , and AGI.m.’q is therefore at most 879`log10pKq. The
lengths of the MATLAB codes and dependencies (with comments removed) are as follows: lenpφγq ď 92,
lenpgammaApprox.mq ď 307, lenpphi.mq ď 708, and lenpgammaFunc.mq ď 1314. Moreover, recall
that lenpΓq denotes by definition the sum of lenpAGI.mq and the length of all its dependencies.

By adding the previous quantities together, we conclude that the length of the code Φl is bounded above
by

lenpΦdq ď lenpΓq ` log10pKq ` ε



50 SUPPLEMENTARY MATERIAL

where ε “ εMATLAB “ 3300 characters. This concludes the proof of the Theorem. �
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