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Abstract

This note complements the paper The quest for optimal sampling: Computationally efficient,
structure-exploiting measurements for compressed sensing [2]. Its purpose is to present a proof
of a result stated therein concerning the recovery via compressed sensing of a signal that has
structured sparsity in a Haar wavelet basis when sampled using a multilevel-subsampled discrete
Fourier transform. In doing so, it provides a simple exposition of the proof in the case of Haar
wavelets and discrete Fourier samples of more general result recently provided in Breaking the
coeherence barrier: A new theory for compressed sensing [1].

1 Introduction

In many applications of compressed sensing, the image or signal x ∈ Cn to be recovered is sparse
or compressible in an orthonormal wavelet basis Φ ∈ Cn×. However, it is well known that the
coefficients c = Φ∗x in such a basis possess far more than mere sparsity. In fact, they are highly
structured: if the vector c of wavelet coefficients is divided into dyadic scales, there is far more
sparsity at the finer scales than at the coarser scales. In [2] it was argued that, in order to obtain a
better reconstruction with compressed sensing, one should exploit such structure by taking appro-
priate measurements. This can be achieved by subsampling the discrete Fourier transform in an
appropriate way. Not only does this lead to improved reconstructions over standard (sub)Gaussian
random measurements, it also explains the success of compressed sensing in applications where the
measurements naturally arise from the Fourier transform, e.g. MRI, X-ray CT, etc.

In this note we provide a short, expositional proof of the corresponding recovery result stated in
[2] for the case of one-dimensional discrete Fourier measurements with Haar wavelets. We refer to
[1] for the proof of the corresponding result for general wavelets in the infinite-dimensional setting.
Throughout, we use the same notation as in [2].

2 Preliminaries

Let x = {x(t)}n−1
t=0 ∈ Cn be a signal. Denote the Fourier transform of x by

Fx(ω) =
1√
n

n∑
t=1

x(t)e2πiωt/n, ω ∈ R,
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and write F ∈ Cn×n for the corresponding matrix, so that

Fx = {Fx(ω)}n/2ω=−n/2+1.

The concern of this note is the recovery of x from a small subset y ∈ Cm of the measurements
Fx. We do so using techniques of compressed sensing, by assuming that x is compressible in
a Haar wavelet basis. Let n = 2r for some r ∈ N. The Haar basis consists of the functions
{ψ} ∪ {φj,p : j = 0, . . . , r − 1, p = 0, . . . , 2j − 1} where

ψ(t) = 2−r/2, 0 ≤ t < 2r,

and

φj,p(t) =


2
j−r
2 p2r−j ≤ t < (p+ 1

2)2r−j

−2
j−r
2 (p+ 1

2)2r−j ≤ t < (p+ 1)2r−j

0 otherwise

.

Write Φ ∈ Cn×n for the matrix corresponding to this basis, and let c = Φ∗x ∈ Cn be the vector of
coefficients of x. We divide c into r levels corresponding to wavelet scales:

c = (c(0)| . . . |c(r−1))>,

(note that we now index over 0, . . . , r − 1, as opposed to 1, . . . , r as was done in [2]) where

c(0) = (〈x, ψ〉, 〈x, φ0,0〉)> ∈ C2,

and
c(j) =

(
〈x, φj,0〉, . . . , 〈x, φj,2j−1〉

)> ∈ C2j .

Let M0 = 0 and
Mj = 2j , j = 1, . . . , r,

so that c(j) corresponds to the segment of the vector c with indices {Mj + 1, . . . ,Mj+1}.
We now wish to specify how to subsample the Fourier transform Fx. Recall that Fx is indexed

over {−n/2 + 1, . . . , n/2}. Proceeding as in [2], we divide this set up into r frequency bands. Let

W0 = {0, 1},

and
Wj = {−2j + 1, . . . ,−2j−1} ∪ {2j−1 + 1, . . . , 2j}, j = 1, . . . , r − 1, (2.1)

and note that W0, . . . ,Wr−1 form a disjoint partition of {−n/2 + 1, . . . , n/2}. Observe that

|W0| = 2, |Wj | = 2j , j = 1, . . . , r − 1.

For j = 0, . . . , r − 1, we now choose the index set Ωj ⊆Wj uniformly at random of size |Ωj | = mj .
If

Ω = Ω0 ∪ · · · ∪ Ωr−1, |Ω| = m = m0 + . . .+mr−1, (2.2)

then the vector of measurements is given by y = PΩFx, where the matrix PΩ ∈ Cm×n picks out
the elements of Fx with entries in Ω. Equivalently, the measurement matrix A = PΩF (see [2]).

Remark 2.1 Throughout this note, we shall use the notations a . b and a & b to mean that there
exists a constant C independent of all relevant parameters such that a ≤ Cb or a ≥ Cb respectively.
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3 Main theorem

Our concern is signals x for which the vector c is not just approximately sparse, but has a distinct
sparsity structure within its wavelet scale. Given the parameters M = (M0, . . . ,Mr−1), we recall
from [2] that c is (k,M)-sparse in levels, where k = (k0, . . . , kr−1) ∈ Nr if

‖c(j)‖0 ≤ kj , j = 0, . . . , r − 1.

If Σk,M denotes the set of such vectors, then we define the best (k,M)-term approximation of an
arbitrary c ∈ Cn by

σk,M(c)1 = min
z∈Σk,M

‖c− z‖1. (3.1)

In order to recover such an x from noisy measurements y = Ax+ e with ‖e‖2 ≤ η, we consider the
convex optimization problem

min
z∈Cn

‖Φz‖1 s.t. ‖y −Az‖2 ≤ η. (3.2)

The result we shall prove is the following:

Theorem 3.1. Let x ∈ Cn and Ω be as in (2.2). Let ε ∈ (0, e−1] and suppose that

mj &

kj +

r−1∑
l=0
l 6=j

2−
|j−l|

2 kl

 log(ε−1) log(n), j = 0, . . . , r − 1. (3.3)

Then, with probability exceeding 1−kε, where k = k0 + . . .+kr−1, any minimizer x̂ of (3.2) satisfies

‖x− x̂‖2 ≤ C
(
η
√
D(1 + E

√
k) + σk,M(Φ∗x)1

)
,

for some constant C, where σk,M(f) is as in (3.1), D = 1+

√
log2(6ε−1)

log2(4En
√
k)

and E = maxj=0,...,r−1{(Nj−
Nj−1)/mj}. If mj = |Wj |, j = 0, . . . , r − 1, then this holds with probability 1.

We refer to [2] for a detailed discussion on the implications of this result. However, note that
(3.3) asserts that we require near-optimal number of measurements mj in the jth frequency band
to recover the kj significant wavelet coefficients in the corresponding jth wavelet band.

4 Proof of Theorem 3.1

4.1 Setup

Let U = Cn×n be given by U = FΦ∗. There is a natural division of U into blocks defined by the
sampling and sparsity bands. Let Ujl be restriction of U to rows with indices in Wj and columns
with indices {Ml + 1, . . . ,Ml+1}. Note that the entries of Uj,l are

(Ujl)ω,p = Fφl,p(ω), ω ∈Wj , p = 0, . . . , 2j − 1, j = 0, . . . , r − 1, l = 1, . . . , r − 1,

and
(Uj0)ω,0 = Fψ(ω), (Uj,0)ω,1 = Fφ0,0(ω), ω ∈Wj , j = 0, . . . , r − 1.
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Recall the coherence µ(V ) of matrix V ∈ Cn×n is defined by µ(V ) = maxj,l=1,...,n |Vj,l|2. As in
[2, Def. 4], define the (j, l)th local coherence of the matrix U by

µ(j, l) =
√
µ(Ujl) max

l′=0,...,r−1

√
µ(Ujl′) (4.1)

Note that the second term is the coherence of the 2j × 2r submatrix of U formed by concatenating
only those rows in Wj . Given a vector k = (k0, . . . , kr−1), we also define the relative sparsities (see
[2, Def. 5]) by

Kj = max
z∈Σk,M

‖z‖∞≤1

∥∥∥∥∥
r−1∑
l=0

Ujlz
(l)

∥∥∥∥∥
2

2

. (4.2)

With these definitions in hand, [2, Thm. 1] gives that the conclusions of Theorem 3.1 hold, provided
m0, . . . ,mr−1 satisfy the following two conditions:

(i) We have

mj & |Wj |

(
r−1∑
l=0

µ(j, l)kl

)
log(ε−1) log(n), j = 0, . . . , r − 1. (4.3)

(ii) For all k̃0, . . . , k̃r−1 ∈ (0,∞) satisfying

k̃0 + . . .+ k̃r−1 ≤ k0 + . . .+ kr−1, k̃j ≤ Kj ,

we have mj & m̃j log(ε−1) log(n), where m̃j satisfies

1 &
r−1∑
j=0

(
|Wj |
m̃j
− 1

)
µ(j, l)k̃j , l = 0, . . . , r − 1. (4.4)

Thus, to prove Theorem 3.1, we need only show that (3.3) implies (4.3) and (4.4). To do this, we
need to estimate the local coherences µ(j, l) and the relative sparsities Kj . These are subjects of
the next two subsections.

4.2 The local coherences µ(j, l)

We commence with the following lemma:

Lemma 4.1. For ω ∈ {−2r−1 + 1, . . . , 2r−1}, we have

Fψ(ω) =

{
1 ω = 0
0 otherwise

,

and

Fφj,p(ω) =

 0 ω = 0

2j/2−re2πiωp/2j

(
1−e2πiω/2

j+1
)2

1−e2πiω/2
r otherwise

.
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Proof. The first statement is trivial. For the second, we proceed by direct computation:

Fφj,p(ω) =
2
j−r
2

√
n

∑
p2r−j≤t<(p+1/2)2r−j

e2πiωt/n − 2
j−r
2

√
n

∑
(p+1/2)2r−j≤t<(p+1)2r−j

e2πiωt/n

=
2
j−r
2

√
n

e2πiωp2r−j/n
2r−j−1−1∑

s=0

e2πiωs/n − 2
j−r
2

√
n

e2πiω(p+1/2)2r−j/n
2r−j−1−1∑

s=0

e2πiωs/n

= 2j/2−r
(

e2πiωp/2j − e2πiω(p+1/2)/2j
) 2r−j−1−1∑

s=0

e2πiωs/n

= 2j/2−r
(

e2πiωp/2j − e2πiω(p+1/2)/2j
)(e2πiω2r−j−1/n − 1

e2πiω/n − 1

)

= 2j/2−re2πiωp/2j
(

1− e2πiω/2j+1
)(e2πiω/2j+1 − 1

e2πiω/2r − 1

)
,

as required.

We now have the following:

Lemma 4.2. The local coherences µ(j, l) satisfy

µ(j, l) . 2−j2−|j−l|/2, j, l = 0, . . . , r − 1.

Proof. Recalling the definition (4.1), we see that it suffices to show that

µ(Ujl) . 2−j2−|j−l|, j, l = 0, . . . , r − 1.

Let ω ∈Wj . Then
2j−1 ≤ |ω| ≤ 2j . (4.5)

Recall also that
| sinπt| ≤ π|t|, ∀t ∈ R, | sinπt| ≥ 2t, |t| ≤ 1/2.

Thus
2j−r ≤ |sin(πω/2r)| ≤ π2j−r, ω ∈Wj .

Applying this and Lemma 4.1 now gives

|Fφl,p(ω)| = 2l/2−r+1

∣∣sin(πω/2l+1)
∣∣2

| sin(πω/2r)|
. 2l/2−j

∣∣∣sin(πω/2l+1)
∣∣∣2 , ω 6= 0. (4.6)

Recall also that Fφl,p(0) = 0. Suppose now that l ≥ j. Then |ω|/2l ≤ 2j−l and therefore we get

|Fφl,p(ω)| . 2−l/22j−l = 2−j/22−3|j−l|/2, ∀ω, l ≥ j.

Conversely, if l < j, then we use the fact that
∣∣sin(πω/2l+1)

∣∣ ≤ 1 to get

|Fφl,p(ω)| . 2l/2−j = 2−j/22−|j−l|/2, ∀ω, l < j.

Hence, we find that
|Fφl,p(ω)| . 2−j/22−|j−l|/2, ∀ω, j, l.
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Since Ujl has entries Fφl,p(ω) for l 6= 0, it now follows immediately that

µ(Ujl) . 2−j2−|j−l|, j = 0, . . . , r − 1, l = 1, . . . , r − 1.

To complete the proof, we need only consider the case l = 0. Recall that when l = 0, the first
column of the matrix Uj,l has entries Fψ(ω). However, by Lemma 4.1, Fψ(ω) = 1 for ω = 0 ∈W0

and Fψ(ω) = 0 for ω 6= 0. Thus |Fψ(ω)| . 2−j/22−|j−0|/2. The second column has entries Fφ0,0(ω),
and thus also satisfies the same bound. Hence we get the case l = 0 as well.

4.3 The relative sparsities Kj

From the definition (4.2), we have

√
Kj ≤ max

z∈Σk,M
‖z‖∞≤1

r−1∑
l=0

‖Ujl‖2‖z(l)‖2.

Note that ‖z(l)‖2 ≤
√
‖z(l)‖0 =

√
kl. Hence

√
Kj ≤

r−1∑
l=0

‖Ujl‖2
√
kl, (4.7)

and therefore it suffices to estimate ‖Ujl‖2.

Lemma 4.3. The matrices Ujl satisfy

‖Ujl‖2 . 2−|j−l|/2, j, l = 0, . . . , r − 1.

Proof. Suppose that l = 0 and let z ∈ C2, ‖z‖2 = 1. Then

‖Uj0z‖22 =
∑
ω∈Wj

|Fψ(ω)z0 + Fφ0,0(ω)z1|2 ≤
∑
ω∈Wj

(
|Fψ(ω)|2 + |Fφ0,0(ω)|2

)
.

Recall that Fψ(ω) = 0 for ω 6= 0 and Fψ(0) = 1. Also Fφ0,0(0) = 0 and by (4.6) we have
|Fφ0,0(ω)| ≤ 2−j . Since |W0| = 2 and |Wj | = 2j otherwise, we get ‖Uj0z‖22 . 2−j . The result for
l = 0 now follows immediately.

Suppose now that l = 1, . . . , r − 1. Let z ∈ C2l , ‖z‖2 = 1, and write g =
∑2l−1

p=0 zpφl,p. Then

‖Ujl‖22 = sup
z∈C2l

‖z‖2=1

∑
ω∈Wj

|Fg(ω)|2. (4.8)

By Lemma 4.1, we have Fφl,p(ω) = e2πiωp/2lFφl,0(ω). Hence

Fg(ω) = Fφl,0(ω)
2l−1∑
p=0

zpe
2πiωp/2l = Fφl,0(ω)G(ω/2l), G(z) =

2l−1∑
p=0

zpe
2πipz.
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Thus ∑
ω∈Wj

|Fg(ω)|2 ≤ max
ω∈Wj

|Fφl,0(ω)|2
∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2

. 2l−2j | sin(πω/2l+1)|4
∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2

.
∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2{ 2l−2j j ≥ l

22j−3l j < l
, (4.9)

where the second inequality is due to (4.6). Since G(z) is periodic with period 1, we find that

∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2 =

2j−1∑
ω=0

∣∣∣G(ω/2l)
∣∣∣2 . (4.10)

Moreover, since G is a trigonometric polynomial of degree 2l, we have

2l−1∑
ω=0

∣∣∣G(ω/2l)
∣∣∣2 = 2l

∫ 1

0
|G(z)|2 dz = 2l‖z‖22 = 2l.

Suppose that j < l. Then by this and (4.10), we have

∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2 ≤ 2l−1∑

ω=0

∣∣∣G(ω/2l)
∣∣∣2 = 2l.

Conversely, suppose that j ≥ l. By (4.10) and periodicity of G,

∑
ω∈Wj

∣∣∣G(ω/2l)
∣∣∣2 = 2j−l

2l−1∑
ω=0

∣∣∣G(ω/2l)
∣∣∣2 = 2j .

Substituting this into (4.9) and using (4.8) gives

‖Ujl‖22 .

{
2j2l−2j j ≥ l
2l22j−3l j < l

,

and therefore ‖Ujl‖22 . 2−|j−l|, as required.

Using this lemma and (4.7), we now deduce that

Kj .

(
r−1∑
l=0

2−|j−l|/2
√
kl

)2

.
r−1∑
l=0

2−|j−l|/2
r−1∑
l=0

2−|j−l|/2kl .
r−1∑
l=0

2−|j−l|/2kl. (4.11)

4.4 Final arguments

We are now able to complete the proof of the main result, Theorem 3.1. Recall that it suffices to
show that (3.3) implies (4.3) and (4.4). Consider the right-hand side of (4.3). By Lemma 4.2,

|Wj |

(
r−1∑
l=0

µ(j, l)kl

)
log(ε−1) log(n) .

(
r−1∑
l=0

2−|j−l|/2kl

)
log(ε−1) log(n).
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Hence (3.3) implies (4.3). Similarly, applying Lemma 4.2 to the right-hand side of (4.4) gives

r−1∑
j=0

(
|Wj |
m̃j
− 1

)
µ(j, l)k̃j .

r−1∑
j=0

|Wj |
m̃j

2−j2−|j−l|/2k̃j .

Since |Wj | = 2j and
r−1∑
j=0

2−|j−l|/2 . 1, l = 0, . . . , r − 1,

we see that it suffices to take
m̃j & k̃j .

By definition, k̃j ≤ Kj . Therefore an application of (4.11) now gives that (3.3) implies (4.4) as
well. This completes the proof of Theorem 3.1.
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