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ABSTRACT. Hardness of approximation (HA) – the phenomenon that, assuming P 6= NP, one can easily com-
pute an ε-approximation to the solution of a discrete computational problem for ε > ε0 > 0, but for ε < ε0

(the approximation threshold) it suddenly becomes intractable – is a core phenomenon in the foundations of
computations that has transformed computer science. In this paper we study the newly discovered phenomenon
in the foundations of computational mathematics: generalised hardness of approximation (GHA) – which in
spirit is close to classical HA in computer science. However, GHA is typically independent of the P vs. NP
question in many cases. Thus, it requires a new mathematical framework that we initiate in this paper. We
demonstrate the hitherto undiscovered phenomenon that GHA happens when using AI techniques in order to
train optimal neural networks (NNs). In particular, for any non-zero underdetermined linear inverse problem
the following phase transition can occur: One can prove the existence of optimal NNs for solving the problem
but they can only be computed to a certain accuracy ε0 > 0. Below the approximation threshold ε0 – not only
does it become intractable to compute the NN – it becomes impossible regardless of computing power, and no
randomised algorithm can solve the problem with probability better than 1/2. Moreover, despite the existence of
a stable optimal NN, any attempts of computing it below the approximation threshold ε0 will yield an unstable
NN. Our results use and extend the current mathematical framework of the Solvability Complexity Index (SCI)
hierarchy and facilitate a program for detecting the GHA phenomenon throughout computational mathematics
and AI.
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1. INTRODUCTION

Hardness of approximation [7, 8, 16, 50, 58, 59, 88] describes the following phenomenon: Computing an
ε-approximation to a discrete computational problem is in P (solvable in polynomial time) for ε > ε0 but the
problem often becomes NP-hard (or NP-complete) when ε < ε0, where ε0 is the approximation threshold.
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aries of AI, foundations of computational mathematics.
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In particular, assuming P6=NP we have the following phase transition:

Classical phase
transition at ε0 in hardness

of approximation
0

ε
ε0

ε > ε0 :

Computing
ε-approx ∈ P

ε < ε0 :

Computing
ε-approx is /∈ P

If P=NP the phenomenon may not occur, as there may not be any phase transition between the problem
being in P for ε > ε0 and not being in P for ε < ε0. However, if P 6=NP then there is a phase transition as
the problem ceases to be in P when ε < ε0. The phenomenon is a well established part of the foundations
of computations that has been the subject of several Gödel and Nevanlinna Prizes. The hardness of approxi-
mation phenomenon is almost exclusively associated with combinatorial computational problems, however
– as we discuss in this paper and as was discovered in [13] and subsequently in [40] – a generalised form of
this phenomenon can happen in other areas of the computational sciences regardless of the P vs. NP ques-
tion. In this paper we lay down the foundations for a theory on generalised hardness of approximation and
study the phenomenon in connection with AI methods for underdetermined inverse problems. In particular,
we demonstrate a new discovery in generalised hardness of approximation.

Consider a computational problem, for example, computing the minimiser of a convex optimisation
problem or computing the optimal neural network for an inverse problem. We now informally define the
general concept of approximate computational problem in computational mathematics.

Approximate computational problem: Given an ε > 0, the ε-approximate computational problem is the
problem of computing an approximation that is no more than ε away from the true solution – in some ap-
propriate predefined metric. Suppose that we have a computational problem and two classes of approximate
computational problems S1 and S2 with S1 ∩ S2 = ∅ and ε1 ≥ ε2 > 0. We say that the computational
problem has an (S1, S2)-phase transition at (ε1, ε2) if we have the following:

The approximate computational problem ∈ S1, for ε > ε1,

The approximate computational problem ∈ S2, for ε < ε2.
(1.1)

If ε1 = ε2 in (1.1) we say that the phase transition is sharp and call ε1 the approximation threshold. Schemat-
ically, the concept of generalised hardness of approximation with a sharp phase transition can be visualised
as follows:

Sharp phase transition
at ε1 in generalised hardness

of approximation
0

ε
ε1

ε > ε1 :

Computing
ε-approx ∈ S1

ε < ε1 :

Computing
ε-approx ∈ S2 (1.2)

This definition can of course be generalised to any family of collections S1, . . . , Sk, k > 1 of computational
problems with Sj ∩ Si = ∅ for j 6= i and ε1, . . . , ε2(k−1) > 0 with ε1 ≥ ε2 > ε3 ≥ ε4 > . . . > ε2k−3 ≥
ε2(k−1) as follows. We say that we have an (S1, . . . , Sk)-phase transition at (ε1, . . . , ε2(k−1)) if we have the
following:

The approximate computational problem ∈ S1, for ε > ε1,

The approximate computational problem ∈ S2, for ε3 < ε < ε2,

...

The approximate computational problem ∈ Sk−1, for ε2k−3 < ε < ε2k−4,

The approximate computational problem ∈ Sk, for ε < ε2(k−1),

(1.3)
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where we say that the phase transition in (1.3) is sharp at ε2j−1 if ε2j−1 = ε2j for some integer j and call
ε2j−1 an approximation threshold.

As the generalised hardness of approximation phenomenon can be independent of the P vs. NP ques-
tion, one needs a mathematical theory outside of computer science. The mathematics behind the Solvability
Complexity Index (SCI) hierarchy is particularly well suited for this. This is a framework in the foundations
of computational mathematics that establishes the boundaries of what can be achieved in computational
mathematics and has been used in a wide collection of areas in computational mathematics. The SCI hier-
archy was introduced in [56] and further developed in [17, 18, 38, 39]. Further results and in particular new
techniques for the SCI hierarchy were also developed in [13] in connection with the extended Smale’s 9th
problem, where the first discovery of generalised hardness of approximation was encountered in optimisa-
tion problems such as linear programming [14] – linked to robust optimisation [21, 22] – basis pursuit [72]
and lasso [90]. The GHA phenomenon described in this paper, however, is different to the phenomenon
described in the work on the extended Smale’s 9th problem [13], as the condition analysis [30, 78–80] is
different (see also Remark 2.2). Further developments on the SCI hierarchy followed in [40], where gen-
eralised harness of approximation has been identified in deep learning, where the phase transitions depend
on both accuracy and the amount of data needed, see §3 for details. The theory of the SCI hierarchy is
now comprehensive [13, 17–20, 38–40, 45, 56, 57, 69, 70, 87, 96, 97], where more details can be found in §3.
Generalised hardness of approximation fits naturally into the SCI framework and allows for analysis in any
computational model such as the Blum-Shub-Smale (BSS) [26] or the Turing model [91]. Phase transitions
can potentially behave differently in these two models, however, the results in this paper are universal for
any model of computation.

1.1. Optimality of neural networks for underdetermined linear systems. We study the following un-
derdetermined systems of equations. Let A : RN → Rm be a linear mapping with non-trivial kernel and let
M1 ⊂ RN be some subset that we call initial domain. We now consider the following inverse problem:

Given measurements y = Ax+ e of x ∈M1, recover x ∈M1, (1.4)

where e ∈ Rm is a potential noise vector. These types of problems have been extensively studied in sparse
recovery and compressed sensing whenM1 is, for example, a collection of sparse vectors or vectors with
some structured sparsity [3–5, 11, 12, 23, 28, 31, 32, 44, 46, 64, 65]. However, recent developments have
led to a plethora of AI techniques [6, 10, 54, 55, 63, 68, 74, 99] for solving these types of problems. More
specifically, deep learning approaches have become popular over the last years, where one trains a neural
network N : Rm → RN from some training set T ⊂ RN ×Rm of the form T = {(xj , Axj)}rj=1, for some
{xj}rj=1 ⊂ M1. However, it has been established that there is a fundamental stability-accuracy trade-off
for such methods [6, 40, 52, 54]. Indeed, great accuracy on certain inputs may cause unstable behaviour
and hallucinations in the reconstruction in form of false information in other reconstructed objects. Thus,
it becomes important to establish the optimal choice of neural network in order to optimise performance.
Such optimal maps have already been a focal point in approximation theory.

Indeed, approximation theory has a rich tradition in the theory of optimal approximations and optimal
reconstruction maps. A particular example is the seminal work of A. Cohen, W. Dahmen and R. DeVore
[37], where they define the concept of optimal reconstruction maps for underdetermined inverse problems.

Definition 1.1 (Optimality in the sense of Cohen, Dahmen & DeVore [37]). Let A : RN → Rm be linear,
M1 ⊂ RN and

M2 := A(M1).

Define the optimality constant for the pair (A,M1) as

copt(A,M1) = inf
ϕ :M2⇒RN

sup
x∈M1

dH1 (ϕ(Ax), x),
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where dH1 denotes the Hausdorff metric. Here, the double arrow notation ⇒ denotes that the mapping can
be multivalued. We define a family of approximately optimal maps of (A,M1) as follows. We say that
ϕε :M2 → RN is a family of approximate optimal maps of (A,M1) if for all ε ∈ (0, 1],

sup
x∈M1

dH1 (ϕε(Ax), x) ≤ copt(A,M1) + ε, (1.5)

and that ϕ0 is an optimal map for (A,M1) if ϕ0 satisfies (1.5) with ε = 0.

The first key question is whether there exist neural networks that are optimal maps for different under-
determined inverse problems. Moreover, one can ask if such an optimal neural network can be trained from
training data. Let F be collection of underdetermined inverse problems (A,M1) and letNNm,N be the set
of NNs mapping Rm → RN that are bounded on

⋃
(A,M1)∈F A(M1), where we will throughout the paper

use the more compact notation ⋃
F
M2 :=

⋃
(A,M1)∈F

A(M1).

We also require that the NNs in NNm,N have a finite fixed set of nonlinearities that are computable (see
Definition 4.11). We then have the following question:

Let A : RN → Rm be fixed, and consider underdetermined linear problems (A,M1) as in
(1.4). Do there exist neural networks that are optimal mappings for (A,M1)? Moreover,
suppose that the answer to the first question is ’yes’, and that there is a corresponding
collection Ω of training sets T = {(xj , Axj)} with {xj} ⊂ M1 and a mapping Ξ : Ω ⇒

NNm,N such that Ξ(T ) contains all the neural networks that are optimal for (A,M1).
Does there then exist an algorithm Γ : Ω→ NNm,N that approximates any neural network
in Ξ(T ) for all inputs T ∈ Ω to ε-accuracy for a given ε > 0?

The main result of this paper is that the answer to the first question above is often ’yes’, but typically
there is a generalised hardness of approximation phenomenon such that the optimal neural network can only
be computed to a certain accuracy. We need to make the notion of ’computed to ε-accuracy’ precise in this
case.

1.2. The model of computation. Fix an A : RN → Rm, and consider a collection F of inverse problems
(A,M1) with a corresponding collection Ω of training sets T and a mapping

Ξ : Ω ⇒ NNm,N , such that Ξ(T ) =
{
NM1
opt : NM1

opt is optimal for (A,M1)
}
. (1.6)

Note that Ξ can be multivalued, meaning that the optimal neural network may not be unique, hence the
double arrow notation (see Remark 1.3 regarding the measure of error in that case). We will in some
cases be interested in bounding the derivative of the optimal mappings to ensure stability. Thus, assuming
smoothness of the optimal neural networks, we define ΞD : Ω ⇒ NNm,N for a positive number D to be

ΞD(T ) =

{
NM1
opt ∈ Ξ(T ) : sup

y∈A(M1)

‖DNM1
opt (y)‖op ≤ D

}
, (1.7)

where DNM1
opt (y) denotes the Jacobian of NM1

opt evaluated at y. Note that ΞD(T ) could potentially be empty
for small values of D. We want to compute NM1

opt – or more precisely, one of the optimal neural networks –
and in practice we will compute an approximation.

Remark 1.2 (Non-smooth optimal neural networks). In the case of non-smooth neural networks, the bound
on the Jacobian in (1.7) can be replaced by a bound on the Lipschitz constant. In our theorems the optimal
neural networks will be smooth.

We take the word ’compute’ literally, and thus the following quote explains the situation succinctly:
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“But real number computations and algorithms which work only in exact arithmetic can
offer only limited understanding. Models which process approximate inputs and which per-
mit round-off computations are called for.”

— S. Smale (from the list of mathematical problems for the 21st century [86])

Indeed, often a training set T = {(xj , yj)}rj=1 will not be represented exactly on a computer. This is
becauseA could have rows from the discrete Fourier transform, for example – as in accelerated (subsampled)
Magnetic Resonance Imaging (MRI) – and thus A contains irrational numbers. Another issue is that an
overwhelming amount of modern software used is based on floating-point arithmetic, and hence even if the
input is rational, there will be inexactness due to the floating-point representation. For example, 1/3 can
only be approximated in finite base-2 arithmetic, giving rise to round-off approximation.

Thus, every element (xj , yj) ∈ T – as input to an algorithm – is represented by a sequence of approxi-
mations {(xnj , ynj )}n∈N such that

‖xnj − xj‖`2 ≤ 2−n, ‖ynj − yj‖`2 ≤ 2−n, ∀n ∈ N, (1.8)

and we require that a successful algorithm should work on any such approximating sequence. Note that this
extended computational model of having inexact input is standard and can be found in many areas of the
mathematical literature, and we mention only a small subset here including the work in [24, 29, 42, 48, 49,
66, 67].

Remark 1.3 (Oracles). The above model means that for each training set T = {(xj , yj)}rj=1 ∈ Ω, we have
infinitely many collections of approximate sequences

T̃ = {{(xnj , ynj )}n∈N | (xnj , ynj ) satisfy (1.8), j = 1, . . . , r}. (1.9)

A sequence of approximations is provided to the algorithm through an ’oracle’. For example, in the case of
a Turing machine [91], this would be through an oracle input tape (see [66] for the standard setup), or in the
case of a Blum-Shub-Smale (BSS) machine [25], this would be through an oracle node. The algorithm can
thus ask for an approximation to any given accuracy as in (1.8), and use as many queries as desired.

Definition 1.4 (Computing the neural network NM1
opt to ε-accuracy). We say that the mapping Ξ in (1.6) can

be computed to ε-accuracy if there exists an algorithm Γ such that for any T ∈ Ω,

inf
N
M1
opt ∈Ξ(T )

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)−NM1
opt (y)‖`2 ≤ ε, ∀ T̃ as in (1.9). (1.10)

Similarly, for ΞD in (1.7) and any T ∈ Ω,

inf
N
M1
opt ∈Ξ(T )

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)−NM1
opt (y)‖`2

∨ ‖DΓ(T̃ , ε)(y)−DNM1
opt (y)‖op ≤ ε, ∀ T̃ as in (1.9),

(1.11)

where DΓ(T̃ , ε)(y) and DNM1
opt denote the derivatives of Γ(T̃ , ε)(y) and NM1

opt respectively, and where
‖ · ‖op denotes the standard operator norm as defined in eq. (5.2).

Remark 1.5 (Markov model – Computability of the ’oracle’). We want to emphasise that our results hold
regardless of the computational model for the ’oracle’. In particular, all our results hold in the Markov model
based on the Markov algorithm [81] – i.e. when the inexact input is required to be computable, in particular
when {(xnj , ynj )}n∈N is a computable sequence for j = 1, . . . , r. See also Remark 4.7 and Remark 4.15.

Remark 1.6 (Slight abuse of notation for Γ(T , ε)). As the algorithm must work on any such representation
T̃ of T we will frequently abuse notation and write Γ(T , ε) instead of Γ(T̃ , ε). Also, if a result holds for
only one specific ε ∈ R+, we will frequently drop writing ε as an input to Γ, writing Γ(T ) in place of
Γ(T , ε).
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2. MAIN RESULTS – GENERALIZED HARDNESS OF APPROXIMATION (GHA)

Our main results are gathered in two main theorems, both presented formally in §5. The first main the-
orem asserts that there exists phase transitions for a large class of inverse problems for the computational
problem described above. The second main theorem asserts fundamental computational barriers when at-
tempting to train neural networks to solve (1.4) in the standard computational model with inexact input. In
addition, the second theorem illustrates how small changes in the training set can lead to the collapse of the
accuracy of a working algorithm. In particular, the theorem demonstrates how phase transitions in (1.1) and
(1.2) can suddenly change with the training data.

For all impossibility results we use a generalized model for computation – that is also used in [13,15,38,
40, 56] – in order to obtain universal lower bounds regardless of the computational model. More precisely,
when we refer to an algorithm we mean a so called general algorithm (the formalism of this is defined in
section 4.1). However, for all positive results – of the form "there exists an algorithm" – we use the Turing
model to achieve the strongest upper bounds possible. Throughout the paper B1(0) = {(x, y) ∈ RN×m :

‖x‖`2 , ‖y‖`2 ≤ 1}.

Theorem 2.1 (Generalized hardness of approximation – Phase transitions for computing optimal NNs). For
any integers N > m and any βmax ≥ βmin > 0, consider any fixed non-zero linear map A : RN → Rm

such that the spectrum Sp(AA∗) ⊂ [β2
min, β

2
max]. Then, for any rational ε1 ∈ (0, 3/8] and any integer

` ≥ 2, there exists a collection of initial domainsM1 ⊂ RN , a domain Ω (as described in §1.1) of training
sets T with |T | = `, T ⊆ B1(0), a D ∈ N and a mapping ΞD : Ω ⇒ NNm,N as in (1.7). In particular,
all optimal neural networks NM1

opt ∈ ΞD(T ) 6= ∅ have uniformly bounded (by D) Jacobians. However, the
following happens simultaneously:

(i) No algorithm, not even randomised, can approximate an optimal neural network NM1
opt ∈ Ξ(T ) for

all inputs T ∈ Ω to accuracy ε1 (with probability greater than p > 1/2 in the randomised case –
this is even the case if the algorithm has a non-zero probability of not halting).

(ii) There does exists an algorithm Γ such that NT ,ε = Γ(T , ε) is a NN that approximates an optimal
neural network NM1

opt ∈ Ξ(T ) to accuracy ε > 2ε1 for all T ∈ Ω with the property that there exists
a K ∈ N such that the Jacobian satisfies ‖DNT ,ε(c)‖op ≤ K for all c ∈ Rm and for all T ∈ Ω.

(iii) However, for any K ∈ N, δ ∈ (0, ε1) and any algorithm Γ such that NT ,ε = Γ(T , ε) is a NN
that approximates an optimal neural network NM1

opt ∈ Ξ(T ) to accuracy ε ∈ (ε1, 2ε1 − δ] for all
T ∈ Ω we have the following: There exists infinitely many T ∈ Ω such that the Jacobian satisfies
‖DNT ,ε(c)‖op ≥ K for some c ∈ Rm. In particular, the Lipchitz constant of the NNs will blow up.

Remark 2.2 (No p = 2/3 randomised algorithm with non-zero probability of not halting). Note that the
phase transition described above are different to the phase transitions described in [13]. Indeed, the phase
transitions described in [13] would allow for a randomised algorithm with a non-zero probability of not halt-
ing to succeed with probability p = 2/3. This is not the case for the generalised hardness of approximation
phenomenon described in Theorem 2.1. Hence, the phenomenon described in Theorem 2.1 is ’harder’ and
different to the generalised hardness of approximation phenomenon first discovered in [13].

Remark 2.3 (Consequences of Theorem 2.1). Note that Theorem 2.1 yields the following.

(i) (GHA in inverse problems independent of P vs NP). Generalised hardness of approximation
happens in underdetermined inverse problems independent of P vs NP. Indeed, since a general
algorithm (Definition 4.3) – which is used in all lower bounds – is so powerful that it can sim-
ulate all types of algorithms in any reasonable computational model. In particular, any NP-hard
problem in the Turing model can be solved in one operation by a general algorithm. Moreover,
generalised hardness of approximation can happen for essentially any forward operator linear map
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A : RN → Rm, and the approximation threshold ε1 ∈ (0, 3/8]. The new results suggest a clas-
sification program for determining the approximation threshold depending on conditions on A and
M1.

(ii) (GHA implies an accuracy-stability trade-off). The accuracy-stability trade-off in AI methods for
inverse problems is well documented empirically [6,40,52,54] and to some extent theoretically [40,
54]. Theorem 2.1 provides new theoretical understanding of this phenomenon, and demonstrates
that any attempt of computing too accurate NNs will immediately yield arbitrarily unstable NNs.
However, as long as the accuracy of the computed NN is above a certain threshold, stability can
be achieved. Thus, there is an accuracy-stability trade-off and overperformance immediately yields
instabilities.

Theorem 2.4 (Phase transitions – Rapid changes and the halting problem). Given any N,m ∈ N and a
fixed non-zero linear map A : RN → Rm with non-trivial kernel and an integer ` ≥ 2, there exists a
collection of initial domainsM1 ⊂ RN , a domain Ω (as described in §1.1) of training sets T with |T | = `,
T ⊆ B1(0), and a mapping Ξ : Ω ⇒ NNm,N as in (1.6). In particular, there exists optimal neural
networks NM1

opt ∈ Ξ(T ) 6= ∅. However, the following happens simultaneously:

(i) The mapping Ξ cannot be computed. In particular, no algorithm that takes training sets T ∈ Ω

as inputs, can produce a neural network that approximates any NM1
opt ∈ Ξ(T ) to even one digit

accuracy for all T ∈ Ω.
(ii) However, there exists an infinite collection of training sets {Ti}i∈N ⊂ Ω and an algorithm Γ that

takes inputs in Ω, that for any ε > 0 and Ti produces an ε-approximation to an optimal neural
network in Ξ(Ti). Yet, for any infinite sequence {Tk}k∈N ⊂ Ω of different elements in Ω and any
algorithm Γ that produces an ε-approximation to an optimal neural network in Ξ(Tk) for all k ∈ N
we have the following. There exists an infinite subsequence {Tkj}j∈N ⊆ {Tk}k∈N such that for each
j ∈ N, there is an element (x, y) ∈ Tkj and an element (x′, y′) ∈ RN×Rm with ‖x′‖`2 , ‖y′‖`2 ≤ 1

and ‖(x, y)− (x′, y′)‖`2 ≤
√

2/4j such that if we replace (x, y) with (x′, y′) then we obtain a new
training set T ′kj = [Tkj \ (x, y)] ∪ (x′, y′) ∈ Ω such that

sup
y∈

⋃
FM2

‖Γ(T ′kj , ε)(y)−N
M′1
opt (y)‖`2 > 10−1, ∀ ε > 0,

for any N
M′1
opt ∈ Ξ(T ′kj ) optimal neural network for the inverse problem (A,M′1).

(iii) Moreover, the statement in (ii) is true if we add one particular element, as opposed to changing
one. In particular, for any j ∈ N we can add one element in Tkj and thereby obtain a new training
set T ′′kj with |T ′′kj | = `+ 1 such that Ξ(T ′′kj ) is well defined yielding optimal neural networks for an
M′′1,kj withM1,kj ⊂M′′1,kj , however Γ makes an error in the first digit on the input T ′′kj .

(iv) Computing approximations to Ξ : Ω ⇒ NNm,N to one correct digit is at least as hard as deciding
the Halting problem.

Remark 2.5 (Consequences of Theorem 2.4). Note that Theorem 2.4 yields the following.

(i) (Phase transitions can change rapidly with training data). Both replacing and adding elements
in the training set can change the phase transition and the approximation threshold rapidly. More-
over, the training data that causes the change in the phase transition can be arbitrarily close to
elements that are already in the original training set. Hence, the phase transitions can be highly
unstable and thus the training process itself can be unstable.

(ii) (Training NNs beyond the approximation threshold is at least as hard as the halting problem).
Theorem 2.4 demonstrates that training optimal NNs beyond the approximation threshold is least
as hard as the halting problem, however, where the problem lies in the SCI hierarchy is an open
question.
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Remark 2.6. In both Theorem 2.1 and Theorem 2.4 the existence of inverse problems and families of
training sets are stronger than mere existence results, in fact in section 5.2 and section 5.3 we give explicit
descriptions of how these examples can be constructed. Also, in comparison with the results in [13] and [40],
we wish to remark that theorem 2.1 can be used to construct examples of problems where an optimal neural
network can be constructed to an accuracy of K − 1 digits, however no algorithm can construct it to an
accuracy of K digits and this can be done for any K ∈ N.

2.1. The main results in the framework of generalised hardness of approximation. In the language of
generalised hardness of approximation, Theorem theorem 2.1 can be stated as follows. Consider the follow-
ing computational problem, ε-approximate computational problem and classes of ε-approximate computa-
tional problems:

(Ia) Computational problem a: Given the training set T ∈ Ω, compute an optimal neural network
NM1
opt ∈ NNm,N for the inverse problem (A,M1) in the sense of (1.6).

(Ib) Computational problem b: Given the training set T ∈ Ω and a positive numberD, compute a stable
optimal neural network NM1

opt ∈ NNm,N for the inverse problem (A,M1) in the sense of (1.7).
(IIa) ε-approximate computational problem a: Given the training set T ∈ Ω compute an ε-approximation

– in the sense of (1.10) – to an optimal neural network NM1
opt ∈ NNm,N .

(IIb) ε-approximate computational problem b: Given the training set T ∈ Ω and a positive number D,
compute an ε-approximation – in the sense of (1.11) – to a stable optimal neural network NM1

opt ∈
NNm,N .

(III) Classes of ε-approximate computational problems:

Sa1 (ε) = The set of ε-approximate computational problems for which

∃ an algorithm Γ computing ε-approximations in the sense of (1.10),

Sa2 (ε) = The set of ε-approximate computational problems for which

@ a randomised algorithm Γ computing ε-approximations in the sense of (1.10)

with probability p > 1/2.

Sb1(ε) = The set of ε-approximate computational problems for which

∃ an algorithm Γ computing ε-approximations in the sense of (1.11),

Sb2(ε) = The set of ε-approximate computational problems for which

@ an algorithm Γ computing ε-approximations in the sense of (1.11).

We will – with a slight abuse of notation – omit the explicit mention of the ε dependency in the Saj s and
Sbj s. Theorem 2.1 therefore implies the following statement.

Corollary 2.7 (Theorem 2.1 in a generalised hardness of approximation language). For any integersN > m

and any βmax ≥ βmin > 0, consider any non-zero linear map A : RN → Rm such that the spectrum
Sp(AA∗) ⊂ [β2

min, β
2
max]. Then, for any rational ε1 ∈ (0, 3/8] and any integer ` ≥ 2, there exists a

collection Ω (as described in §1.1) of training sets and a mapping Ξ : Ω → NNm,N , such that we have
the following. There is a (Sa1 , S

a
2 )-phase transition at (ε1, 2ε1) and a D ∈ N such that there is a sharp

(Sb1, S
b
2)-phase transition at 2ε1 (note that (1.11) depends on D).

3. HISTORICAL BACKGROUND, THE MATHEMATICS OF THE SCI HIEARARCY AND RELATED WORK

The results in this paper can be viewed as a continuation of Smale’s program [25, 83, 84] on the foun-
dations of computational mathematics. Smale asked several fundamental questions on the foundations of
computations, among them his 18th problem: what are the limits of artificial intelligence? – which bares
similarities with the famous Turing paper from 1950 [92]. Our work can be viewed as a step towards
answering this question. There are several results that are very much related to this paper.
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Generalised hardness of approximation: The first discovery of the generalised hardness of approxi-
mation phenomenon was done by A. Bastounis et al. in [13], where the phenomenon was documented
in a large collection of convex optimisation problems. Following this framework, the results [40] by
M. Colbrook, V. Antun et al. demonstrated how generalised hardness of approximation happens in deep
learning when NNs can be proven to exist and solve optimisation problems, yet there are phase transition
depending on the accuracy and also the amount of data available, see also [36].
The mathematics behind the SCI hierarchy: Generalised hardness of approximation is part of the greater
program on the mathematics behind the SCI hierarchy, and this foundations program provides the frame-
work for our results and proofs. The SCI framework was introduced in [56] and continued in the work by
J. Ben-Artzi et A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imagin-
gal. [19,20], in the work by M. Colbrook et al. [38,39] as well as in the work by O. Nevanlinna [17,18,57]
and co-authors. See also the work by S. Olver and M. Webb [96] and [41]. The SCI hierarchy is directly
related to S. Smale’s [83, 85] program on the foundations of computational mathematics and scientific
computing that initiated the early work by C. McMullen [69, 70, 87] and P. Doyle & C. McMullen [45]
on polynomial root-finding. These are pioneering classification results in the SCI hierarchy. See also
classification results in the SCI hierarchy by S. Weinberger [97]. Note that the mathematics behind the
SCI hierarchy can be traced back to K. Gödel [53] and A. Turing [91], however, the new techniques
developed allow for any model of computation.
Instability in AI: Our results are intimately linked to the instability phenomenon in AI methods – which
is widespread [35,51,61,62,71,89] – and our results add theoretical understandings to this vast research
program. There are particular links to the work by B. Adcock et al. [2] and V. Antun et al. [6]. See also
recent developments by D. Higham, I. Tyukin et al. [93, 94].
Existence vs computability of NNs: There is a substantial literature on existence results of NNs [27, 75,
98], see for example the review papers by A. Pinkus [76] and the work by R. DeVore, B. Hanin, and G.
Petrova [43] and the references therein . However, as established in [40] by M. Colbrook, V. Antun et
al., only a small subset of the NNs than can be proven to exist can be computed by algorithms. However,
following the framework of A. Chambolle and T. Pock [33, 34], the results in [40] demonstrate how –
under specific assumptions – stable and accurate NNs can be computed. See also the work by P. Niyogi,
S. Smale and S. Weinberger [73] on existence results of algorithms for learning.
The PCP theorem: The 2001 Gödel Prize was awarded to S. Arora, U. Feige, S. Goldwasser, C. Lund,
L. Lovász, R. Motwani, S. Safra, M. Sudan, and M. Szegedy for their work on the much celebrated PCP
theorem [7–9, 50] and its connection to hardness of approximation. The PCP theorem implies that –
subject to P6=NP – there are large collections of combinatorial optimisation problems for which there is
a sharp phase transition at some ε0 > 0 (where ε0 depends on the problem). Our theorems serve a similar
role – however for completely different mathematical reasons – demonstrating how there will be large
classes of inverse problems for which one can prove the existence of an optimal NN, yet there will be
phase transitions at an approximation threshold ε1 > 0. Moreover, as our theorems state: ε1 can take any
value, i.e. for any ε1 > 0 there exists a training problem which has ε1 as an approximation threshold.

Acknowledgements. LG acknowledges support from the Niels Henrik Abel and C. M. Guldbergs memo-
rial fund. ACH acknowledges support from the Simons Foundation Award No. 663281 granted to the
Institute of Mathematics of the Polish Academy of Sciences for the years 2021-2023, from a Royal Society
University Research Fellowship, and from the Leverhulme Prize 2017.

4. TOOLS FOR THE PROOFS – MATHEMATICAL PRELIMINARIES FROM THE SCI HIERARCHY

The SCI hierarchy and the mathematical framework that comes with it has been very useful in order to
establish the boundaries of computational mathematics ranging from spectral problems, inverse problems,
optimisation, AI etc. The SCI hierarchy is based on the concept of a computational problem that we formally
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define below. This is described by a function

Ξ : Ω→M

that we want to compute, where Ω is some domain, and (M, d) is a metric space. The mainstay of the
hierarchy are the ∆α

k classes. The α is related to the model of computation as explained below. In particular,
given a collection C of computational problems, then

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the

error, i.e. ∃ a sequence of algorithms {Γn} such that d(Γn(ι),Ξ(ι)) ≤ 2−n, ∀ι ∈ Ω.
(iii) ∆α

2 is the set of problems that can be computed using one limit (the SCI = 1) without error control,
i.e. ∃ a sequence of algorithms {Γn} such that limn→∞ Γn(ι) = Ξ(ι), ∀ι ∈ Ω.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI ≤ m),

i.e. ∃ a family of algorithms {Γnm,...,n1
} such that

lim
nm→∞

. . . lim
n1→∞

Γnm,...,n1
(ι) = Ξ(ι), ∀ι ∈ Ω. (4.1)

In general, this hierarchy cannot be refined unless there is some extra structure on the metric spaceM. The
hierarchy typically does not collapse, and we have:

∆α
0 ( ∆α

1 ( ∆α
2 ( . . . ( ∆α

m ( . . . . (4.2)

However, depending on the collection C of computational problems, the hierarchy (4.2) may terminate for
a finite m, or it may continue for arbitrary large m. We will focus on the lower parts of the hierarchy in
(4.2) in this paper, however, for the interested reader we point out that for certain metric spacesM one can
extend (4.2) to the full hierarchy and define the Πα

j and Σαj classes for j ∈ N. We then get the following
hierarchy:

Πα
0 Πα

1 Πα
2

∆α
0 ∆α

1 Σα1 ∪Πα
1 ∆α

2 Σα2 ∪Πα
2 ∆α

3 · · ·

Σα0 Σα1 Σα2

=

=

( ( ( ( ((
(

(

(

(

(

(

(

(

(

(

(4.3)

For details about (4.3) see [17, 18, 56]. In order to study the underdetermined system presented in section 1
formally we present the framework for computational problems established in [13].

Definition 4.1. Let Ω be a set, which we call the domain. Let Λ be a set a complex valued functions
f : Ω→ C such that for ι1, ι2 ∈ Ω, ι1 = ι2 if and only if f(ι1) = f(ι2) for all f ∈ Λ, called an evaluation
set. Let (M, d) be a metric space, and finally let Ξ : Ω → M be a function which we call the problem
function. We call the collection {Ξ,Ω,M,Λ} a computational problem.

Remark 4.2 (Multivalued functions). When dealing with multivalued problems one needs a framework
that can handle multiple solutions. As the setup above does not allow Ξ to be multi-valued we need some
slight changes. We allow Ξ to be multivalued, even though towers of algorithms are not. Hence, the only
difference to the standard SCI hierarchy is that the last limit in (4.1) is replaced by

distM(Ξ(ι),Γnm
(ι)) −→ 0, nm →∞,

where distM(Ξ(ι),Γnm
(ι)) := infx∈Ξ(ι) dM(x,Γnm

(ι)).



GENERALISED HARDNESS OF APPROXIMATION AND THE SCI HIERARCHY 11

4.1. Algorithms. Whenever we aim to use neural networks to solve a computational problem, there is a
process of constructing an, in some sense, optimal neural network. This is generally called the training
process. We formalize this process in terms of an algorithm.

Definition 4.3. Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is a mapping Γ : Ω →
M such that for each ι ∈ Ω

(i) There exists a finite subset of evaluations ΛΓ(ι) ⊆ Λ.
(ii) The action of Γ on ι only depends on {f(ι)}f∈ΛΓ(ι).

(iii) For every ι′ ∈ Ω such that f(ι′) = f(ι) for every f ∈ ΛΓ(ι), it holds that ΛΓ(ι′) = ΛΓ(ι).

The statements in our theorems are well-defined up to the definition of an algorithm/randomised algo-
rithm. There are a myriad of different types of machines that can be used to model an algorithm: the Turing
machine [91] (and its cousins including the Markov model [81]), the BSS machine [26], the von Neumann
architecture [95], the real RAM [77], etc. as well as their randomised versions. Indeed, since randomised
methods, such as for example randomised gradient decent, are often used when training neural networks,
we need to consider randomised algorithms in order to achieve full generality. However, these models are
not equivalent when it comes to computability. Thus, to create universal impossibility results we use general
algorithms from Definition (4.3) and a randomised general algorithms from Definition 4.4 that encompass
any reasonable definition of a computational model in the way that they are more powerful than any standard
machine, therefore making the impossibility results stronger. Formally we define a randomised algorithm
as follows:

Definition 4.4 (Randomised General Algorithm [13]). Given a computational problem {Ξ,Ω,M,Λ}, where
Λ = {fk | k ∈ N, k ≤ |Λ|}, a randomised general algorithm (RGA) is a collection X of general algorithms
Γ : Ω → M∪ {NH}, a sigma-algebra F on X , and a family of probability measures {Pι}ι∈Ω on F such
that the following conditions hold:

(i) For each ι ∈ Ω, the mapping Γran
ι : (X,F) → (M∪ {NH},B) defined by Γran

ι (Γ) = Γ(ι) is a
random variable, where B is the Borel sigma-algebra onM∪ {NH}.

(ii) For each n ∈ N and ι ∈ Ω, we have {Γ ∈ X |TΓ(ι) ≤ n} ∈ F .
(iii) For all ι1, ι2 ∈ Ω and E ∈ F so that, for every Γ ∈ E and every f ∈ ΛΓ(ι1), we have f(ι1) =

f(ι2), it holds that Pι1(E) = Pι2(E).

It is not immediately clear whether condition (ii) for a given RGA (X,F , {Pι}ι∈Ω) holds independently of
the choice of the enumeration of Λ. This is indeed the case and was established in [13].

We should justify this model before we move on: (i) and (ii) are measure theoretic notions that ensure
that natural sets that one might construct for randomized algorithms (such as the minimum runtime) are
measurable sets, these assumptions are also satisfied by any classical probabilistic model such as randomized
Turing machines or randomized BSS machines. The third point ensures the consistency of the model, in
the sense that if the model reads the same information for two inputs then the probability distribution of the
outputs should be the same.

4.2. Inexact input and breakdown epsilons. We now introduce the notion of inexact input for general
computational problems.

Definition 4.5 (∆1-information). Suppose we are given a computational problem {Ξ,Ω,M,Λ} and that
Λ = {fi}i∈I where I is some index that can be finite or infinite. As previously mentioned, in many cases
we are forced to deal with inexact inputs. In this case we can not access fi(ι), but rather an approximation
fi,n(ι) where fi,n(ι) → fi(ι) as n → ∞. Throughout this paper we will assume that this can be done
with error control. More precisely, we assume that we have access to fi,n : Ω → Dn + iDn, where
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Dn = {k2−n | k ∈ Z}, such that

‖{fi,n(ι)}i∈I − {fi(ι)}i∈I‖∞ ≤ 2−n ∀ ι ∈ Ω. (4.4)

If we for each n ∈ N have that there exists an fi,n : Ω → Dn + iDn for i ∈ I such that eq. (4.4) holds
for {fi,n}i∈I , we say that the set Λ̂ = {fi,n | i ∈ I, n ∈ N} provides ∆1-information for {Ξ,Ω,M,Λ}.
Moreover, we denote the family of all such Λ̂ by L1(Λ).

We want our algorithms to be able to deal with inexact input, in other words we want to have algorithms
that can handle the computational problems {Ξ,Ω,M, Λ̂} for all possible choices of Λ̂ ∈ L1(Λ). In order
to formalize this we introduce computational problems with ∆1-information:

Definition 4.6. Given {Ξ,Ω,M,Λ} with Λ = {fi}i∈I the corresponding computational problem with
∆1-information is defined as

{Ξ,Ω,M,Λ}∆1 = {Ξ̃, Ω̃,M, Λ̃},

where

Ω̃ = {ι̃ = {f(ι)i,n}i∈I,n∈N | ι ∈ Ω, {fi,n}i∈I satisfying eq. (4.4) for all n ∈ N}, (4.5)

Ξ̃(ι̃) = Ξ(ι) and Λ̃ = {f̃i,n}i∈I,n∈N where f̃i,n(ι̃) = fi,n(ι). Given an ι̃ ∈ Ω̃, there is a unique ι ∈ Ω for
which ι̃ = {fi,n(ι)}i∈I,n∈N. We say that this ι ∈ Ω corresponds to ι̃ ∈ Ω̃.

We interpret the computational problem {Ξ,Ω,M,Λ}∆1 as follows: The domain Ω̃ is the collection of
all the sequences approximating the inputs in Ω, and we say that an algorithm Γ works on inexact input if
it works for all ι̃ ∈ Ω̃, that is, for any sequence approximating ι. For later use, we need to specify how the
input ι̃ ∈ Ω̃ is passed to a Turing machine T as an input. For this we need to assume that the index set I for
Λ is countable. With this assumption in place ι̃ is represented by an oracle tape that T can access, where on
input (i, n) ∈ I × N the oracle returns the unique finite binary string representing f̃i,n(ι̃).

Remark 4.7 (Turing vs Markov). It is possible to consider a restriction of ∆1 information wherein for each
j, {fj,n}n∈N forms a computable sequence. This restriction (known as the Markov model [81]) strengthens
the negative results and weakens the positive results. See Remark 4.15 for further details.

We wish to investigate the constructibility of optimal neural networks in the theory of underdetermined
systems. That is, investigate the existence of training algorithms that obtain a neural network that approxi-
mates the inverse of the linear mapping A well. To do this we need the notion of breakdown epsilons.

Definition 4.8 (Strong and probabilistic strong breakdown epsilons). Given a computational problem
{Ξ,Ω,M,Λ}, the strong breakdown-epsilon εsB is given by

εsB = sup{ε > 0 | ∀ algorithms Γ,∃ ι ∈ Ω such that dM(Γ(ι),Ξ(ι)) > ε}

and the strong probabilistic breakdown-epsilon εsPB : [0, 1)→ R is given by

εsPB(p) = sup{ε > 0 | ∀ Γran ∈ RGA ∃ ι ∈ Ω such that Pι(dM(Γranι ,Ξ(ι)) > ε) > p}.

As established in [13], impossibility results for randomised algorithms can differ if one considers only
those algorithms that halt on every input, leading to the following two definitions.

Definition 4.9 (Halting randomised general algorithms). A randomised general algorithm Γran for a com-
putational problem {Ξ,Ω,M,Λ} is called a halting randomised general algorithm (hRGA) if Pι(Γran

ι =

NH) = 0, for all ι ∈ Ω. We denote the class of all halting randomised general algorithms by hRGA.
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Definition 4.10 (Probabilistic strong halting breakdown epsilon). Given the computational problem
{Ξ,Ω,M,Λ}, where Λ = {fk | k ∈ N, k ≤ |Λ|}, we define the halting probabilistic strong Breakdown-
epsilon εsPhB : [0, 1)→ R according to

εsPhB(p) = sup{ε ≥ 0, | ∀Γran ∈ hRGA ∃ ι ∈ Ω such that Pι(distM(Γran
ι ,Ξ(ι)) > ε) > p},

where Γran
ι is defined in (i) in Definition 4.4.

Throughout this paper we wish to prove the strongest possible lower bounds of computability. Thus we
allow our general algorithms to preform arbitrary general operations and we prove all our lower bounds
for such algorithms. On the other hand, we also wish to have the strongest possible positive results, thus
when we construct algorithms, these algorithms will always be recursive (That is, possible to simulate
with a Turing machine). We denote the ∆0 and ∆1 class of computational problems that are computable
by recursive algorithms by ∆A

0 and ∆A
1 , where A stands for arithmetic, since we only allow arithmetic

operations.

4.3. Formal description of problem. In order to prove the negative claims asserted in the previous section
we formulate our problem as a computational problem.

We start by formally defining what we mean by a neural network. Deep learning is a rapidly developing
field, where new constructions and architectures of neural networks are constantly proposed. Our aim is to
capture as many of these constructions as possible with our results, thus we propose the following general
formal definition of a neural network:

Definition 4.11. A neural network N : Cm → CN is a composition of maps on the form

φ(y) = VL(ρL−1(. . . ρ1(V1(y)) . . . ), y),

where each Vj : CNj−1 → CNj is an affine map on the form Vj(x) = Wjx + bj for j = 1, . . . , L − 1 and
VL : CNL−1 → CN is an affine map on the form VL(x, y) = WLx+bL(y), where bL(y) is an affine function
on the input y given by bL(y) = Ry + cL ∈ CN . Furthermore, there exists an index set Ij ⊆ {1, . . . Nj}
for each j = 1, . . . , L such that the activation function ρj : CNj−1 → CNj is given by

ρj(x)k =

fj(xk), if k ∈ Ij
xk, otherwise,

where fj : C→ C is a possibly non-linear function.

Remark 4.12. The affine dependence of the last bias term bL(y) allows skip connections from the input
to the last level. By composition this allows us to obtain standard architectures such as residual networks
[52, 60, 82] with an arbitrary number of layers between the skip connections.

The domain Ω is the set of objects that gives rise to our computational problem. In our setting these
objects are the training sets. Since the error of an algorithm is mostly interesting relative to the size and the
bounds of the training set, we will consider bounded training sets of fixed size throughout this paper. More
formally let

Ω ⊆ T 1
` = {T ⊆ RN × Rm : ‖x‖`2 , ‖y‖`2 ≤ 1 for all (x, y) ∈ T , and |T | = ` } (4.6)

be the domain. The set of measurements Λ is the collection of functions that provide us with the information
we are allowed to read as an input to an algorithm. We define the measurements as follows: Given a
training set T ∈ Ω we order T according to the lexicographic ordering and define fkx,i to be given by
fkx,i(T ) = π1(T )k,i, where π1(T ) := {x | (x, y) ∈ RN ×Rm, (x, y) ∈ T } and the indexes k and i denote
the i’th coordinate of the of the k’th element according to the lexicographic ordering. We define fky,j in the
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same way to measure the y-coordinates, more precisely fky,i(T ) = π2(T )k,i, where π2(T ) := {y | (x, y) ∈
RN × Rm, (x, y) ∈ T }. In summary, we define Λ to be the collection

Λ = {fky,j , fkx,i : Ω→ R | i = 1, . . . , N, j = 1, . . . ,m, k = 1, . . . , `}. (4.7)

Next, we define a precise notation for an inexact representation of the elements in the domain Ω. Let
Λ̂ = {fn | f ∈ Λ, n ∈ N} be a set that provides ∆1-information for Ω as defined in Definition 4.5. Then,
for an arbitrary T ∈ Ω, let (x, y) ∈ T be the k’th element in T according to the lexicographic ordering. We
then define the corresponding inexact representations x̃ of x and ỹ of y to be the sequences

x̃ = {{fkx,i,n(T )}i=Ni=1 }n∈N and ỹ = {{fky,j,n(T )}j=mj=1 }n∈N. (4.8)

At last, given a matrix A ∈ RN×m and a collection {(T ,M1) | T ∈ Ω} we define the problem function Ξ

in the following way

Ξ : Ω ⇒ NNm,N , such that Ξ(T ) =
{
NM1
opt : NM1

opt is optimal for (A,M1)
}
.

where NNm,N is set of neural networks of real input dimension m and real output dimension N that are
bounded on

⋃
FM2 =

⋃
(A,M1)∈F A(M1). We consider NNm,N as a metric space equipped with the

following metric, for N1,N2 ∈ NNm,N ,

d(N1,N2) = sup
z∈

⋃
FM2

‖N1(z)−N2(z)‖`2 . (4.9)

4.4. An important preliminary result. We use the following important proposition to prove the non-
existence of algorithms that construct optimal neural networks.

Proposition 4.13 (Proposition 10.5 in [13]). Let {Ξ,Ω,M,Λ} be a computational problem with Λ =

{fk | k ∈ N, k ≤ |Λ|} countable, and let {ι1n}∞n=1, {ι2n}∞n=1 be sequences in Ω. Consider the following
conditions:

(a) There are sets S1, S2 ⊂M and κ > 0 such that infx1∈S1,x2∈S2 dM(x1, x2) ≥ κ and Ξ(ιjn) ⊂ Sj for
j = 1, 2.

(b) For every k ≤ |Λ| there is a ck ∈ C such that |fk(ιjn)− ck| ≤ 1/4n, for all j = 1, 2 and n ∈ N.
(c) There is an ι0 ∈ Ω such that for every k ≤ |Λ| we have that (b) is satisfied with ck = fk(ι0).
(d) There is an ι0 ∈ Ω for which condition (c) holds and additionally ι2n = ι0, for all n ∈ N.

Depending on which of the conditions (a) – (d) are fulfilled, there exists a Λ̂ ∈ L1(Λ) such that some of the
following claims about the computational problem {Ξ,Ω,M, Λ̂} hold:

(i) εwB ≥ εwPB(p) ≥ κ/2 for p ∈ [0, 1/2),
(ii) εsB ≥ εsPhB(p) ≥ κ/2 for p ∈ [0, 1/2) and εsPB(p) ≥ κ/2 for p ∈ [0, 1/3),

(iii) εsPB(p) ≥ κ/2 for p ∈ [0, 1/2).

Concretely, if (a) and (b) are fulfilled, then (i) holds, if (a) – (c) are fulfilled, then (i) and (ii) hold, and
finally, if (a) – (d) are fulfilled, then (i) – (iii) hold.

Remark 4.14. Proposition 4.13 is a result about how inexact input can ruin the performance of any algo-
rithm given that the domain has some unfortunate properties. In a way the above statement is very intuitive
and should be read as follows: If two things that are arbitrarily close in the domain gets mapped far apart
by the problem function Ξ, then any algorithm that works with inexact input (that is, works with the com-
putational problem {Ξ,Ω,M,Λ}∆1 ) will break down. In fact, the result even states something slightly
stronger: There exists one specific Λ̂ that gives ∆1-information for {Ξ,Ω,M,Λ} such that all algorithms Γ

break down for the corresponding computational problem {Ξ̂, Ω̂,M, Λ̂}, where

Ω̂ = {ι̂ = {f(ι)i,n}i∈I,n∈N | ι ∈ Ω and fi,n ∈ Λ̂},
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and Ξ̂(ι̂) = Ξ(ι). As before, we notice that there is a canonical bijection between Ω and Ω̂ and by iden-
tifying Ω ' Ω̂ the mapping Ξ̂ becomes the same as Ξ. Because of this identification we will often write
{Ξ,Ω,M, Λ̂} in place of {Ξ̂, Ω̂,M, Λ̂}.

Remark 4.15 (Computability of ∆1 information). Note that if (ck)k≤|Λ| are computable numbers in the
sense of Turing-computability, then Λ̂ can be chosen so that Λ̂ = {fk,n | k ≤ |Λ| and n ∈ N} and so that,
for any ι ∈ Ω and each fk ∈ Λ there exists a Turing machine, such that, given input n ∈ N, outputs fk,n(ι),
see [13] for details. Thus, the non-computability result presented in Proposition 4.13 can easily be seen to
apply to the Markov model.

5. FORMAL STATEMENTS AND PROOFS OF THE MAIN RESULTS

Before we embark on the proofs of the theorems we will introduce some basic notation and discuss
some vocabulary that will be used in the proofs. First, we introduce some standard projections. Indeed, for
T ∈ RN × Rm, π1(T ) and π2(T ) is defined as follows:

π1(T ) := {x | (x, y) ∈ RN × Rm, (x, y) ∈ T },

π2(T ) := {y | (x, y) ∈ RN × Rm, (x, y) ∈ T }.
(5.1)

Second, recall Definition 4.5 and Definition 4.6 where we discuss the concepts of ∆1-information and
computational problems with ∆1-information. In particular, we have the original domain Ω and the corre-
sponding domain Ω̃ that contains all sequences of approximations to the elements in Ω. We will typically
use the notation T ∈ Ω and T̃ ∈ Ω̃. At last, we use ‖ · ‖op to denote the standard operator norm, more
precisely for an M : RN → Rm we have that

‖M‖op = sup{‖Mx‖`2 : ‖x‖`2 ≤ 1}. (5.2)

5.1. Useful propositions and lemmas. We start by presenting a driving proposition, from which parts of
the first four of our main results will follow as corollaries.

Proposition 5.1. LetA : RN → Rm be a non-zero matrix with non-trivial kernel. Then for any κ ≤ 3/8 and
` ≥ 2, there exists uncountably many domains Ω ⊆ T 1

` of training sets, which give rise to uncountably many
computational problems {Ξ,Ω,M,Λ} as described in §4.3, such that for each domain Ω there is a D ∈ N
such that ΞD in (1.7) satisfies ΞD(ι) 6= ∅ for all ι ∈ Ω, and there exist sequences {ι1n}n∈N, {ι2n}n∈N ⊂ Ω

such that the conditions a)− c) in Proposition 4.13 are satisfied for {ι1n}n∈N and {ι2n}n∈N.

Proof. Since A has a non-trivial kernel, we can pick an v ∈ ker(A) such that ‖v‖`2 = 2κ. Since A is non-
zero, we can pick a unit vector e ∈ ker(A)⊥. Let Tb ∈ T 1

`−2 be a finite training set with distinct non-zero
x-coordinates such that Tb ⊂ ker(A)⊥ ×A(ker(A)⊥) and (B+

1/4(v), A(B+
1/4(v))) /∈ Tb where

B`,+1/4(v) = {v′ ∈ RN | v ≤` v′ ≤` v +
1

4
e},

is the potentially empty set where ≤` denotes the lexicographic ordering. We now define {ι1n}n∈N and
{ι2n}n∈N as follows. Let

ι1n = Tb ∪ {(0, 0), (v+
θ

4n
e,A(v+

θ

4n
e))} and ι2n = Tb ∪ {(0, 0), (v, 0)}, n ∈ N, (5.3)

where θ = ‖A‖−1
op if ‖A‖op > 1 and θ = 1 otherwise. Then it is not hard to see that ιjn ⊆ T 1

` for all
n ∈ N and j = 1, 2. We define the domain Ω ⊆ T 1

` to be Ω = {ι1n}n∈N ∪ {ι2n}n∈N, and we define
the corresponding inverse problems (A,Mj

1,n) as follows: Mj
1,n = π1(ιjn) with j = 1, 2, where π1(ιjn)

is defined in (5.1). We show that Ξ(ιjn) 6= ∅ for all n ∈ N and j = 1, 2 below. By the arbitrary choice
of the elements in Tb it is clear that there exist uncountably many choices for the domain Ω, and by our
choice of Tb ∈ ker(A)⊥ × A(ker(A)⊥) and the fact that e ∈ ker(A)⊥ and A is injective on ker(A)⊥, it
is clear that for all n ∈ N the elements in ι1n are distinct in both the x and y-coordinates. Thus, we can
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achieve exact interpolation of every point by a smooth neural network according to [76, Theorem 5.1]. In
particular, for each n ∈ N, there is a neural network Nn : Rm → RN such that for each pair (ξn, ηn) ∈ ι1n
we have Nn(ηn) = ξn, and it is clear from Definition 1.1 that this is an optimal map for the inverse
problem (A,M1

1,n). By the same argument we can find a neural network N : Rm → RN such that for any
(ξ, η) ∈ Tb we have N(η) = ξ and N(0) = 1/2v. We claim that N is optimal for (A,M2

1,n). Indeed, note
that

inf
ϕ :M2⇒RN

sup
x∈M2

1,n

dH1 (ϕ(Ax), x) ≥ inf
ϕ :M2⇒RN

max
x=0,x=v

dH1 (ϕ(Ax), x) = 1/2‖v‖. (5.4)

However, by the definition of N we have that

sup
x∈M2

1,n

dH1 (N(Ax), x) = max
x=0,x=v

dH1 (N(Ax), x) = 1/2‖v‖, (5.5)

proving our claim. This means that Ξ(ιjn) 6= ∅ for j = 1, 2. Moreover, It is clear from the choice of Ω that
there is a D ∈ N such that ΞD in (1.7) satisfies ΞD(ι) 6= ∅ for all ι ∈ Ω. Thus the computational problem
{ΞD,Ω,M,Λ} is now well defined. Next we show that the sequences{ι1n}n∈N and {ι2n}n∈N satisfy points
a) and b) in proposition 4.13, as well as condition c) :
a). We define

S1 =
⋃
n∈N

Ξ(ι1n) and S2 =
⋃
n∈N

Ξ(ι2n).

Using the metric defined in (4.9) we get that

inf
N1∈S1,N2∈S2

d(N1,N2) = inf
N1∈S1,N2∈S2

sup
z∈

⋃
FM2

‖N1(z)−N2(z)‖`2

≥ inf
N1∈S1,N2∈S2

‖N1(0)−N2(0)‖`2 (optimality of Nj and (5.4), (5.5) give)

= ‖0− 1

2
v‖`2 =

1

2
‖v‖`2 =

1

2
2κ = κ.

Thus part a) in proposition 4.13 is satisfied.
b). For each n ∈ N the elements in Tb and (0, 0) coincide in ι1n and ι2n. Moreover we have put constraints

on Tb such that the elements (v+ θ
4n e,A(v+ θ

4n e)) ∈ ι1n and (v, 0) ∈ ι2n land on the same index kv when we
list the elements according to the lexicographic ordering for each n ∈ N. Thus we only need to show that the
criteria in part b) holds for each fkvx,i(ι

1
n) and fkvy,j(ι

1
n) for i = 1, . . . , N , j = 1, . . . ,m and n ∈ N. We start

by fkvy,j . For each j we choose ckvy,j = 0, then we get |fkvy,j(ι1n) − ckvy,j |= |A( θ
4n e)j− 0| = θ

4n |A(e)j | ≤ 1
4n ,

and |fkvy,j(ι2n) − ckvy,j | = |0 − 0| = 0 for each n ∈ N. Thus the criteria in part b) holds for the fkvy,j’s. Next,
for each fkvx,i we choose ckvx,i = vi, then we get |fkvx,i(ι1n)− ckvx,i| = |vi + θ

4n ei − vi| ≤ θ
4n ‖e‖`2 ≤ θ

4n ≤ 1
4n ,

and |fkvx,i(ι2n)− ckvx,i| = |vi − vi| = 0 for each n ∈ N. Thus we can conclude that part b) in proposition 4.13
holds for {ι1n}n∈N and {ι2n}n∈N.
c). Finally, we observe that if we pick ι0 = ι2n = Tb ∪ {(0, 0), (0, v)} then part b) is satisfied with

ck = fk(ι0) for each k ≤ |Λ|. Thus, point c) is also satisfied, this concludes the proof. �

In order to prove the existence of algorithms in part (ii) and (iii) of Theorem 2.4 we need to obtain a
recursively constructable neural network. For this we will use the following technical lemma.

Lemma 5.2. Let ` ∈ N and let x1, . . . , x` ∈ RN and y1, . . . , y` ∈ Rm be such that xi 6= xj and yi 6= yj

for j 6= i. Further, let φ : R→ R be given by φ(x) = 1
x2+1 , and let Φ : RN → R` be the function given by

Φ(y) = [φ(‖y − y1‖`2), . . . , φ(‖y − y`‖`2)]T . (5.6)

At last, let the matrices X ∈ RN×` and R ∈ R`×` be given by

X = (x1, . . . , x`) (5.7)
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and

R =


φ(‖y1 − y1‖`2) . . . φ(‖y` − y1‖`2)

...
...

φ(‖y1 − y`‖`2) . . . φ(‖y` − y`‖`2)

 =


1 . . . φ(‖y` − y1‖`2)
...

...
φ(‖y1 − y`‖`2) . . . 1

 . (5.8)

Then R is invertible, and the function s : Rm → Rm given by s(y) = X · R−1 · Φ(y) satisfies s(yi) =

X ·R−1 ·Φ(yi) = xi for all i = 1, . . . , `. Moreover, s ∈ NNm,N , that is, s can be represented as a neural
network.

Proof. by [47, Section 4.5] R is a symmetric positive definite nonsingular matrix when the yi’s are unique,
which they are by assumption. The fact that s interpolates all the pairs (xi, yi) for i = 1, . . . , ` now follows
by observing that the solution for the system of inequalities

xi =


xi(1)

...
xi(N)

 =


∑`
j=1 λ

1
jφ(‖yi − yj‖2`2)

...∑`
j=1 λ

N
j φ(‖yi − yj‖2`2)

 =


λ1

1 . . . λ1
`

...
...

λN1 . . . λN`



φ(‖yi − y1‖2`2)

...
φ(‖yi − y`‖2`2)

 =: λ · Φ(yi).

is given by λ = XR−1 (this can be found by expanding the above inequality to X = λR and using the fact
that R is invertible). Thus, xi = λ ·Φ(yi) = X ·R−1 ·Φ(yi) = s(yi), which proves the interpolation claim.
At last, it remains to argue that s can be written as a neural network. Indeed, we observe that

s(y) = NT (y) := V3ρ2V2ρ1V1(y), (5.9)

with the affine maps and non-linear functions defined as follows:

V1 : W1 = [1, . . . , 1]T` ⊗ Im, b1 = −
∑̀
j=1

e`j ⊗ yj , ρ1(t) = t2

V2 : W2 = I` ⊗ [1, . . . , 1]m, b2 = 0, ρ2(t) = 1/(t+ 1), t ∈ R

V3 : W3 = XR−1, b3 = 0,

(5.10)

where [1, . . . , 1]m is the row vector of length m with ones, and e`j is the j-th coordinate column vector of
length `. The execution of the different layers in (5.10) for an input y ∈ Rm can be calculated as follows:

y 7→ z = V2ρ1V1(y) = (‖y − y1‖2`2 , . . . , ‖y − y`‖
2
`2)T 7→ ρ2(z) = Φ(y) 7→ V3Φ(y) = XR−1Φ(y).

�

5.2. Formal statement and proof of theorem 2.4. In this section we present the longest proof of the paper.
The impossibility results of the theorem are direct consequences of the driving proposition, while several of
the other results require a substantial amount of work. As previously mentioned, we prove our second main
result by proving the following more specific, but technical statement.

Theorem 5.3. Given any N,m ∈ N and a fixed non-zero linear map A : RN → Rm with non-trivial kernel
and an integer ` ≥ 2, there exists a collection of initial domains M1 ⊂ RN , a domain Ω (as described
in §1.1) of training sets T with |T | = `, T ⊆ B1(0), and a mapping Ξ : Ω ⇒ NNm,N as in (1.6).
In particular, there exists optimal neural networks NM1

opt ∈ Ξ(T ) 6= ∅. However, the following happens
simultaneously:

(i) For any algorithm Γ : Ω → NNm,N that works with inexact input on the computational problem
{Ξ,Ω,M,Λ}∆1 there exists an inexact representation T̃1 ∈ Ω̃ of a training set T1 ∈ Ω such that

sup
y∈

⋃
FM2

‖Γ(T̃1)(y)−NM1
opt (y)‖`2 ≥ 3/16 > 10−1,
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and such that for any randomised algorithm Γran there exists an inexact representation T̃2 ∈ Ω̃ of a
training set T2 ∈ Ω such that

P

(
sup

y∈
⋃
FM2

‖Γran
T̃2

(y)−NM1
opt (y)‖`2 ≥ 3/16 > 10−1

)
≥ 1

2
.

(ii) However, there exists an infinite collection of training sets {Ti}i∈N ⊂ Ω and an algorithm Γ that takes
inputs in Ω, that for any ε > 0 and Ti produces an ε-approximation to an optimal neural network
in Ξ(Ti). Yet, for any infinite sequence {Tk}k∈N ⊂ Ω of different elements in Ω and any algorithm
Γ that produces an ε-approximation to an optimal neural network in Ξ(Tk) for all k ∈ N we have
the following. There exists an infinite subsequence {Tkj}j∈N ⊆ {Tk}k∈N such that for each j ∈ N,
there exists an element (x, y) ∈ Tkj and an element (x′, y′) ∈ RN × Rm with ‖x′‖`2 , ‖y′‖`2 ≤ 1 and
‖(x, y)− (x′, y′)‖`2 ≤

√
2/4j such that if we replace (x, y) with (x′, y′) then we obtain a new training

set T ′kj = [Tkj \ (x, y)] ∪ (x′, y′) ∈ Ω such that

sup
y∈

⋃
FM2

‖Γ(T ′kj , ε)(y)−N
M′1
opt (y)‖`2 > 10−1, ∀ ε > 0,

with N
M′1
opt being an optimal neural network for the inverse problem (A,M′1) which corresponds to the

training set T ′kj ∈ Ω.
(iii) Moreover, the statement in (ii) is true if we add one particular element, as opposed to changing one.

In particular, for any j ∈ N we can add one element in Tkj and thereby obtain a new training set T ′′kj
with |T ′′kj | = ` + 1 such that Ξ(T ′′kj ) is well defined yielding an optimal neural network for anM′′1,kj
withM1,kj ⊂M′′1,kj . However, for any such T ′′kj we get that

sup
y∈

⋃
FM2

‖Γ(T ′′kj , ε)(y)−N
M′′1
opt (y)‖`2 > 10−1, ∀ ε > 0.

(iv) Approximating Ξ with error control when reading inexact input is at least as hard as deciding the
halting problem, because assuming that {Ξ,M,Λ,Ω}∆1 ∈ ∆A

1 implies that we can decide the halting
problem.

Proof of theorem 5.3. Let A : RN → Rm be an arbitrary linear mapping with non-trivial kernel and let
κ = 3/8. Let v, e ∈ RN be fixed vectors such that v ∈ ker(A) with ‖v‖`2 = 2κ and e ∈ ker(A)⊥ with
‖e‖`2 = 1, and let Tb ∈ T`−2 is a finite training set with distinct non-zero elements in π1(Tb) such that

Tb ⊂ ker(A)⊥ ×A(ker(A)⊥), (B+
1/4(v), A(B+

1/4(v))) /∈ Tb, (5.11)

where B`,+1/4(v) = {v′ ∈ RN | v ≤` v′ ≤` v + 1
4e}, and where ≤` denotes the lexicographic ordering.

We then define Ω = {ι1n}n∈N ∪ {ι2n}n∈N ∪ {αn}n∈N where ι1n and ι2n are the same as in the proof of
Proposition 5.1, given by ι1n = Tb ∪ {(0, 0), (v + θ

4n e,A(v + θ
4n e))} and ι2n = Tb ∪ {(0, 0), (v, 0)}, where

θ = ‖A‖−1
op if ‖A‖op > 1 and θ = 1 otherwise. The corresponding inverse problems are (A,Mj

1,n) where
Mj

1,n = π1(ιjn) for n ∈ N and j = 1, 2. Further, we define αn = T ′b ∪ (0, 0) for all n ∈ N, where
T ′b ⊆ T 1

`−1 satisfies the assumptions as stated for Tb in eq. (5.11), however, T ′b has cardinality ` − 1 while
Tb had cardinality ` − 2. Similarly as for ιjn, the corresponding inverse problem to αn is (A,M1,n) with
M1,n = π1(αn). It is clear that there exists uncountably many linear maps A : RN → Rm that satisfy
the assumptions in Proposition 5.1, and for each such linear map there exists uncountably many domains
Ω ⊆ T 1

` on the form described above, each of which gives rise to a computational problem on the form
described in section 4.3. Let now {Ξ,Ω,M,Λ} be an arbitrary one of these problems, we then proceed by
proving points (i), (ii) and (iii), each in turn for {Ξ,Ω,M,Λ}.

Proof of (i). From the proof of proposition 5.1 it is clear that that the conditions a)−c) in proposition 4.13
are satisfied for Ω′ = {ι1n}n∈N ∪ {ι2n}n∈N ⊂ Ω for κ = 3/8. Therefore by part (ii) in Proposition 4.13 we
can conclude that εsB ≥ εsPB(p) ≥ 1

2κ, for all p ∈ [0, 1
2 ) for the computational problem {Ξ,Ω′,M,Λ} and
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by the inclusion Ω′ ⊂ Ω also for the computational problem {Ξ,Ω,M,Λ}. Hence, by the definition of the
breakdown epsilons it follows that for any generalized algorithm Γ there exists a training set T̃fail ∈ Ω̃′ ⊂ Ω̃

(recall the definition of Ω̃′ and Ω̃ from (4.5) in Definition 4.6) such that

sup
y∈

⋃
FM2

‖Γ( ˜Tfail)(y)−NM1
opt (y)‖`2 ≥ κ/2 ≥ 3/16 > 10−1. (5.12)

and for any randomised algorithm Γran there exists a training set T2 ∈ Ω̃′ ⊂ Ω̃ such that

P

(
sup

y∈
⋃
FM2

‖Γran(T̃2)(y)−NM1
opt (y)‖`2 ≥ κ/2 ≥ 3/16 > 10−1

)
≥ 1

2
.

Proof of (ii). Consider the collection {Ti}i∈N ⊆ Ω defined by Ti = ι1i = Tb ∪ {(0, 0), (v + θ
4i e,A(v +

θ
4i e))} for all i ∈ N. We now proceed by proving part (ii) of the theorem in several steps.

Step I. Proving the computational breakdown in part (ii). Let {Tk}k∈N be an arbitrary fixed infinite
sequence in Ω and let Γ : Ω̃ × (0, 1] → NNm,N be any algorithm that – given any input ε > 0 and any
of the training sets Tk – produces an ε-approximation, as in (1.10), to an optimal neural network in Ξ(Tk).
We then claim that there exists an infinite subsequence {Tkj}j∈N and an element (x′, y′) ∈ RN × Rm

with ‖x′‖`2 , ‖y′‖`2 ≤ 1 such that for any j ∈ N there exists an element (x, y) ∈ Tkj such that ‖(x, y) −
(x′, y′)‖`2 ≤

√
2/4j , and such that if we replace (x, y) with (x′, y′) then we obtain a new training set

T ′kj = [Tkj \ (y, x)] ∪ (x′, y′) ∈ Ω such that there is a

sup
y∈

⋃
FM2

‖Γ(T ′kj , ε)(y)−N
M′1
opt (y)‖`2 > 10−1, ∀ ε > 0,

with N
M′1
opt being an optimal neural network for the inverse problem (A,M′1). Indeed, we may deduce

from part (i) that supy∈
⋃
FM2

‖Γ( ˜Tfail, ε)(y) −NM1
opt (y)‖`2 > 10−1, for all ε > 0, for some Tfail ∈ Ω′.

However, since we have supy∈
⋃
FM2

‖Γ(T̃k, ε)(y) − NM1
opt (y)‖`2 ≤ ε for all ε > 0 for infinitely many

different Tk ∈ Ω – and after observing that Ω = {ι1n}n∈N ∪ {Tb ∪ {(0, 0), (v, 0)}} ∪ {T ′b ∪ {(0, 0)}} – it
follows that Γ must work for infinitely many of the ι1n’s.

Thus, by observing that the conditions a) − c) in proposition 4.13 are satisfied for Ω′ = {ι1n}n∈N ∪
{ι2n}n∈N = {ι1n}n∈N ∪ {Tb ∪ {(0, 0), (v, 0)}}, it follows that any algorithm that works on infinitely many
ι1n’s must fail on the set {Tb ∪ {(0, 0), (v, 0)}}. Hence, T̃fail must be an inexact representation of the
training set Tb ∪ {(0, 0), (v, 0)}. Let now {Tkj}j∈N be the infinite subsequence of {Tk}k∈N consisting of
the elements Tk that are contained in {ι1n}. It is then clear that Tfail differs by only one element from each
of the training sets Tkj for j ∈ N. Hence, by setting (x′, y′) = (v, 0) and (x, y) = (v+ θ

4kj
e,A(v+ θ

4kj
e))

for all j ∈ N, it’s not hard to see that

‖(x′, y′)− (x, y)‖`2 = ‖( θ

4kj
e,A(

θ

4kj
e))‖`2 =

√
1

42kj
+

1

42kj
=

√
2

4kj
≤
√

2

4j
,

and that by replacing (x, y) with (x′, y′) in Tkj we have proved the desired claim.
Step II. Constructing Γ. We notice that sinceMj

1,n = ιjn|RN for all n ∈ N and j = 1, 2 we get that any
neural network N ∈ NNm,N such that N(y) = x for all (x, y) ∈ ι1n will be an optimal neural network for
M1

1,n for all n ∈ N. Thus, we next demonstrate how we can recursively approximate a neural network that
interpolates all the points in ι1n for each n ∈ N. To achieve this we use the radial basis function approach
and recursively approximate the interpolating neural network s : RN → Rm obtained in Lemma 5.2.

We will construct an algorithm Γ : Ω̃× (0, 1]→ NNm,N , such that for each rational ε > 0 and n ∈ N,
we have that supy∈

⋃
FM2

‖Γ(ι̃1n, ε)(y) −Nι1n
(y)‖ ≤ ε, for all n ∈ N, where Nι1n

(y) is the interpolating
neural network defined in (5.9). To do this we recall (5.9) and observe by (5.10) that one can construct an
approximation to Nι1n

from ι̃1n ∈ Ω̃. Indeed, let Λ̂ be an arbitrary fixed set that provides ∆1-information for
Ω as defined in definition 4.5, and recall that for each (x, y) ∈ ι1n we have the corresponding (x̃, ỹ) ∈ ι̃1n, as
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defined in eq. (4.8). We use the notation x̃j , ỹj where

‖x̃j − x‖`2 ≤ 2−j and ‖ỹj − y‖`2 ≤ 2−j . (5.13)

Note that the matrices X = X(x1, . . . , x`) and R = R(y1, . . . , y`), from (5.7) and (5.8), depend on
(x1, . . . , x`) and (y1, . . . , y`) respectively, where {(xi, yi)}`i=1 = ι1n. Similarly, we have that Φ(·) =

Φ(·, y1, . . . , y`) from (5.6) depends on (y1, . . . , y`). To approximateX ,R and Φ we define, for {(x̃i, ỹi)}`i=1 =

ι̃1n, the approximations

Xj = X(x̃j1, . . . , x
j
`), Rj = R(ỹj1, . . . , ỹ

j
` ), Φj(·) = Φ(·, ỹj1, . . . , ỹ

j
` ). (5.14)

Define k : N→ N by

k(j) := min{µ ∈ N | ∀r ≥ µ, Rr is invertible and

sup
y∈

⋃
FM2

‖XrR
−1
r Φr(y)−XR−1Φ(y)‖`2 ≤ 2−j}. (5.15)

We note that k is well defined: Firstly, since the all the point’s in π2(ι1n) are distinct, there must exist a
finite µ ∈ N such that ỹµi 6= ỹµj for all yi, yj ∈ π2(ι1n) with i 6= j, making Rr invertible for all r ≥ µ by
lemma 5.2. Secondly, from the definitions in (5.7), (5.8) and (5.6), Xj → X , Rj → R, Φj → Φ as j →∞,
making k well defined.

We will now estimate an upper bound for k, defined in (5.15), that can be recursively computed from
{(x̃i, ỹi)}`i=1. In order to do that we need to start by recursively finding a lower bound for the smallest sin-
gular value βR of R and an upper bound for the largest singular value βX of X . The upper bound for X can
be derived theoretically in a quite simple way. Indeed, by using the fact that ‖X‖op = maxβ∈Sp(X∗X)

√
β

we can observe that

√
β ≤ ‖X‖op ≤

√√√√∑̀
i=1

‖xi‖2`2 ≤

√√√√∑̀
i=1

1 =
√
` < ` for all β ∈ Sp(X∗X), (5.16)

where Sp(X∗X) denotes the spectrum of the operator X∗X . For the matrix R the task is slightly more
complicated, and we need to use sufficient approximations of R in order to achieve the task of finding a
lower bound for the smallest singular value. More specifically, we need to find a lower bound for 2−h(j)

where h : N→ N is given by

h(j) := min{µ ∈ N | ∀r ≥ µ , sup
y∈

⋃
FM2

‖Rr(y)−R(y)‖`2 ≤ 2−j}. (5.17)

Claim: We claim that for any arbitrary fixed j ∈ N

2−r ≤ 1

2

1

2m

1

`
2−j ⇒ h(j) ≤ r, (5.18)

where h is defined in (5.17), when r ∈ N chosen as in (5.18). Indeed, we verify this by the following series
of calculations. We first observe that

‖Rr −R‖op = ‖[φ(‖ỹrj − yri ‖2`2)− φ(‖yj − yi‖2`2)]i,j=`i,j=1‖`2
= ‖[φ̂(ỹrj , ỹ

r
i )− φ̂(yj , yi)]

i,j=`
i,j=1‖`2 ,

where φ̂(yj , yi) = 1/(1 + ‖yj − yi‖2`2), and where ỹrj and ỹri are the approximations of yj and yi to
accuracy 2−r as defined in eq. (5.13). The mean value theorem for scalar fields then gives us that there
exists a c ∈ (0, 1) such that

‖Rr −R‖`∞ = max
i,j
|[Rr −R]i,j | ≤ max

i,j
‖∇φ̂((1− c)wi,j,r1 + cwi,j2 ‖`2‖w

i,j
2 − w

i,j,r
1 ‖`2 ,

where wi,j,r1 = (ỹrj1, . . . , ỹ
r
jm, ỹ

r
i1, . . . , ỹ

r
im) and wi,j2 = (yj1, . . . , yjm, yi1, . . . , yim). Next, we notice that

sup
q1,q2∈Rm

‖∇φ̂(q1, q2)‖`∞ = sup
q1,q2∈Rm

(−2‖q1 − q2‖`∞)/(1 + ‖q1 − q2‖2`2)2.
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By substituting q = q1−q2, we can find an upper bound for the supremum above, by finding an upper bound
for maxi supq∈Rm 2|qi|/(1 + ‖q‖2`2)2. We notice that we either have that |qi| ≤ ‖q‖2`2 or that |qi| ≤ 1,
and in either way |qi| ≤ 1 + ‖q‖2`2 , hence we can conclude that maxi supq∈Rm 2|qi|/(1 + ‖q‖2`2)2 ≤ 2,
and thus ‖∇φ̂((1 − c)wi,j,r1 + cwi,j2 )‖`2 ≤

√
22m < 2m, since m > 1. Furthermore we have that

‖wi,j,r1 − wi,j2 ‖`2 ≤ ‖ỹrj − yj‖`2 + ‖ỹri − yi‖`2 , and thus we get that

‖Rr −R‖op ≤ ‖Rr −R‖`2 =

√∑
i,j

[Rr −R]2i,j ≤
√∑

i,j

(2m)2(‖ỹrj − yj‖`2 + ‖ỹri − yi‖`2)2.

At last, since 2−r ≤ 1
2

1
2m

1
` 2−j , we can conclude that

‖Rr −R‖op≤ ‖Rr −R‖`2≤
√∑

i,j

(2m)2(‖ỹrj − yj‖`2 + ‖ỹri − yi‖`2)2

≤
√

(2m)2`2(
1

2

1

2m

1

`
2−j+

1

2

1

2m

1

`
2−j)2 =

√
(2m)2`2

1

(2m)2

1

`2
2−2j = 2−j ,

which proves our claim.
Using this, we can now present a recursive algorithm that finds a lower bound for the smallest singular value
of R – note that R self-adjoint and positive definite, thus the smallest singular value coincides with the
smallest element in the spectrum of R:

Inputs: Oracles for all ỹ ∈ π2(ι̃1n).
Outputs: A lower bound for the singular values ofR. More precisely, the integer kR such that 2−kR ≤ βR

for all βR ∈ Sp(R).

1. Put j = n̂ = 1.
2. Choose r such that 2−r ≤ 1

2
1

2m
1
` 2−(j+1).

3. Use the input oracles to read all ỹ ∈ π2(ι̃1n) to precision r and construct the matrix Rr. As we have
seen, the criterion in step 2 implies that ‖Rr −R‖op ≤ ‖Rr −R‖`2 ≤ 2−(j+1).

4. Check – by trying to compute the Cholesky decomposition – whether the matrix Rr − 2−jI is
positive definite.

a. If it is, then we have found a lower bound for the smallest singular value of R since

Sp(Rr − 2jI) ⊆ Sp(R+ εj+1 − 2−jI)

= {β + βε − 2−j | β ∈ Sp(R) and |βε| ≤ 2−(j+1)} ⊆ (0,∞),

which implies that β ≥ 2−j−βε ≥ 2−j−2−(j+1) = 2−(j+1) for all β ∈ Sp(R), where Sp(R)

denotes the spectrum of R, which equals the set of singular values of R. Set kR = j + 1 and
return 2−kR .

b. If it is not, then put j = n̂+ 1 and repeat steps 2,3 and 4.

We notice that the above process will always terminate after a finite number of steps, since R is finite
dimensional and positive definite by lemma 5.2. We are now ready to present a lower bound for 2−k(j),
where k is as defined in eq. (5.15).
Claim: We claim that for any fixed j ∈ N, if r ∈ N is such that

2−r ≤ min

{
1

7

1

4

1

2m

1

`2
2−2kR2−j ,

1

7

1

`
2−kR2−j

}
,
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and such that ỹri 6= ỹrj for all yi, yj ∈ π2(ι1n) with i 6= j, then 2−r is a lower bound for 2−k(j). We now
proceed with verifying this claim. With the approximations ỹr and x̃r as defined in eq. (5.13) we get that:

sup
y∈

⋃
FM2

‖XrR
−1
r Φr(y)−XR−1Φ(y)‖`2

= sup
y∈

⋃
FM2

‖XrR
−1
r Φr(y)−XR−1Φr(y) +XR−1Φr(y)−XR−1Φ(y)‖`2

≤ sup
y∈

⋃
FM2

‖XrR
−1
r −XR−1‖op‖Φr(y)‖`2 +‖R−1‖op‖X‖op‖Φr(y)− Φ(y)‖`2 .

With a similar deduction as for ‖Rr − R‖op we get that supy ‖Φr(y) − Φ(y)‖`2 ≤ 2−j if r is such that
‖ỹr− y‖`2 ≤ 2−r ≤ 1

2
1

2m
1√
`
2−j for all y ∈ π2(ι1n), and we can easily see that this bound holds true by our

choice of r in the section above. Thus,

sup
y∈

⋃
FM2

‖R−1‖op‖X‖op‖Φr(y)− Φ(y)‖`2 ≤ 2kR` sup
y
‖Φr(y)− Φ(y)‖`2 ≤ 2kR`

1

`
2−kR

1

7
2−j ≤ 1

7
2−j ,

by our choice of r. To ease notation in further calculations, we fix y to be an arbitrary element in
⋃
FM2,

and we can continue our calculations as follows:

‖XrR
−1
r Φr(y)−XR−1Φ(y)‖`2 ≤ ‖XrR

−1
r −XR−1‖op‖Φr(y)‖`2 +

1

7
2−j

= ‖XrR
−1
r −XrR

−1 +XrR
−1 −XR−1‖op‖Φr(y)‖`2 +

1

7
2−j

≤ (‖R−1
r −R−1‖op‖Xr‖op + ‖R−1‖op‖Xr −X‖op)‖Φr(y)‖`2 +

1

7
2−j

= ‖R−1
r −R−1‖op‖Xr‖op‖Φr(y)‖`2 + ‖R−1‖op‖Xr −X‖op‖Φr(y)‖`2 +

1

7
2−j

(5.19)

The formula above consists of three terms, where we need to calculate the bounds on the first two. For
the sake of structure and overview we consider each of the terms separately. We start with the term
‖R−1‖op‖Xr −X‖op‖Φr(y)‖`2 and we observe that:

‖R−1‖op‖Xr −X‖op‖Φr(y)‖`2 = ‖R−1‖op‖Xr −X‖op‖Φr(y)− Φ(y) + Φ(y)‖`2
≤ ‖R−1‖op‖Xr −X‖op(‖Φr(y)− Φ(y)‖`2 + ‖Φ(y)‖`2)

Next we notice that ‖Φ(y)‖2`2 =
∑

1≤i≤` 1/(1 + ‖y − yi‖2`2)2 ≤
∑

1≤i≤` 1 = `, thus ‖Φ(y)‖`2 ≤
√
`.

Moreover, we have chosen r such that ‖Φr(y)−Φ(y)‖`2 ≤ 2−j ≤ 1, thus we can continue our calculations
as follows:

‖R−1‖op‖Xr −X‖op‖Φr(y)‖`2 ≤ ‖R−1‖op‖X −Xr‖op(1 +
√
`) ≤ 1

7
2−j +

1

7
2−j , (5.20)

where the last inequality follows by our choice of r, more precisely that ‖x̃r − x‖`2 ≤ 2−r ≤ 1
7

1
` 2−kR2−j

for all x ∈ π1(ι1n) and that ‖Xr −X‖op ≤
√
`maxx∈π1(ι1n) ‖x̃r − x‖`2 ≤

√
` · 2−r.

We now move on to the second term ‖R−1
r − R−1‖op‖Xr‖op‖Φr(y)‖`2 of eq. (5.19). By the second

resolvent identity we get that

‖R−1
r −R−1‖op‖Xr‖op‖Φr(y)‖`2 ≤ ‖R−1

r ‖op‖R−1‖op‖Rr −R‖op‖Xr‖op‖Φr(y)‖`2 .

In order to continue our calculations we need to obtain an upper bound for ‖R−1
r ‖op and ‖Xr‖op. For

‖Xr‖op this is fairly straight forward and we see that ‖Xr‖op = ‖Xr−X+X‖op ≤ ‖Xr−X‖op+‖X‖op ≤
2−j +

√
` ≤ 1 +

√
`. Deriving the upper bound for ‖R−1

r ‖op is slightly more complicated.
We start by a similar calculation as for ‖Xr‖op and get that ‖R−1

r ‖op = ‖R−1
r − R−1 + R−1‖op ≤

‖R−1
r − R−1‖op + ‖R−1‖op. We continue our calculations by using the second resolvent identity: Since

‖R−1
r ‖op ≤ ‖R−1‖op‖R−1

r ‖op‖Rr −R‖op + ‖R−1‖op we get that ‖R−1
r ‖op(1−‖R−1‖op‖Rr −R‖op) ≤

‖R−1‖op. Now, one can deduce that 2−r is chosen small enough to guarantee that ‖R−1‖op‖Rr −R‖op ≤
2−j . Thus, we get that ‖R−1

r ‖op(1−2−j) ≤ ‖R−1
r ‖op(1−‖R−1‖op‖Rr−R‖op) ≤ ‖R−1‖op, which gives
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us that ‖R−1
r ‖op ≤ ‖R−1‖op/(1 − 2−j) ≤ 2kR/(1 − 2−j). At last, since j ≥ 1 we get that ‖R−1

r ‖op ≤
2kR/(1− 2−j) ≤ 2 · 2kR .

Using the calculations above and by our choice of r we can finish our calculations as follows:

‖R−1
r ‖op‖R−1‖op‖Rr −R‖op‖Xr‖op‖Φr(y)‖`2

≤ 2 · 2kR · 2kR‖Rr −R‖op(1 +
√
`)2 = 2 · 22kR(`+

√
`+
√
`+ 1)‖Rr −R‖op ≤

4

7
2−j . (5.21)

Finally, by combining the bounds of each of the terms obtained in eq. (5.20) and eq. (5.21) with the
equation in eq. (5.19), we can conclude that

‖R−1
r XrΦr(y)−R−1XΦ(y)‖`2 ≤ 7 · 1

7
2−j = 2−j

for all arbitrary y ∈
⋃
FM2, where r satisfies the bound specified in eq. (5.18). Since y ∈

⋃
FM2 was

chosen arbitrarily we can conclude that the inequality above also holds true when we take the supremum
over all y ∈

⋃
FM2. At last, since r ∈ N is such that ỹri 6= ỹrj for all yi, yj ∈ π2(ι1n) with i 6= j, we get by

lemma 5.2 that Rr is invertible and R−1
r ◦Xr ◦ Φr(y) ∈ NNm,N . Thus we can finally define

Γ(ι̃1n, ε) = R−1
r ◦Xr ◦ Φr,

where j is chosen such that 2−j ≤ ε and r is chosen such that 2−r ≤ 2−k(j), with 2−k(j) as defined in
eq. (5.18). It is then clear that our algorithm Γ : Ω̃ × (0, 1] → NNN,m maps into the space of neural
networks that are bounded on

⋃
FM2 and approximates an optimal neural network for the set M1

1,n for
any of the given training sets ι1n with n ∈ N. We can conclude that part (ii) of the result holds.

Proof of (iii). In order to prove this part of the theorem we construct a new domain Ω̂ ⊆ T`+1. Let ι̂1n and
ι̂2n be given by ι̂1n = T ′b ∪ {(0, 0), (v+ θ

4n e,A(v+ θ
4n e))} and ι2n = T ′b ∪ {(0, 0), (v, 0)}, where everything

is as in the first section of the proof, except the fact that T ′b has cardinality `− 1 while Tb in the first section
of the proof had cardinality ` − 2. Similarly as before, we define the corresponding sets M1

1,i and M2
1,i

to beM1
1,i = π1(ι̂1n) andM2

1,i = π1(ι̂2n). Next, just as in part (ii), we can use the radial basis function
approach to interpolate the points in ι̂1n and we can prove, by exactly the same argumentation as in part (i),
that Γ will fail on ι̂2n, with an error of 3/16. Let now {Ti} = αi for all i ∈ N. Then αi ⊆ ι̂1i and for the set
M1,i corresponding to αi we have thatM1,i ⊆ M1

1,i, and thus we can conclude that Γ interpolates all the
points in αi and thereby constructs an optimal neural network forM1,i. At last, since αi ∪ (v, 0) = ι̂2i we
can conclude that by adding the element (v, 0) to αi the algorithm Γ fails with error 3/16. The third part
follows from this.

Proof of (iv). Our aim is to show that the assumption that {Ξ,M,Λ,Ω}∆1 ∈ ∆A
1 implies the decidability

of the halting problem. Let

Ω̂ = {(T, x) | T is a Turing machine, x is an input to T}

and let Ξ̂(T, x) = 1 if T halts on x and Ξ̂(T, x) = 0 if T does not halt on x. We want to show that there
exists a recursive mapping Γ̂ such that Γ̂(T, x) = Ξ̂(T, x). We start by defining the mapping gι : Ω̂ → Ω̃

recursively as follows. gι(T, x) = {ιn}n∈N, where for each n ∈ N, ιn is defined as follows:

ιn =

ι1n if T has not halted on x after n steps

ι1n′ if T has halted on input x after n′ steps where 1 ≤ n′ < n.

We need to verify that gι indeed maps into Ω̃, more specifically, that for each pair (T, x) ∈ Ω̂ there exists
an element ι(T,x) ∈ Ω = {ι1n}n∈N ∪ {ι2n}n∈N such that for each k ∈ N and f ∈ Λ we have that

|f(ιk)− f(ι(T,x))| ≤ 2−k, (5.22)

where gι(T, x) = {ιn}n∈N. We first consider the pair (T, x) where T halts on input x after n′ steps for some
n′ ∈ N. It is then not hard to see that the inequality in eq. (5.22) holds with ι(T,x) = ι1n′ , since ιn = ιn′ for
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all n ≥ n′. Next we consider a pair (T, x) where T does not halt on input x. Then gι(T, x) = {ι1n}n∈N, and
as we have seen in the proof of proposition 5.1 we have that |f(ι1k)− f(ι0)| ≤ 2−k for all k ∈ N and for all
f ∈ Λ, where ι0 = Tb ∪ {(0, 0), (0, v)}. Thus, we can conclude that the inequality in eq. (5.22) is satisfied
with ι(T,x) = ι0. With this we can conclude that gι(T, x) ∈ Ω̃ for all (T, x) ∈ Ω̂, and that gι indeed maps
into Ω̃. At last, we notice that gι : Ω̂→ Ω̃ is a recursive function, since for each input (T, x) ∈ Ω̂ the output
can be generated recursively.

Since by assumption {Ξ,M,Λ,Ω}∆1 ∈ ∆A
1 we can choose an arithmetic tower {Γk}k∈N where each

algorithm Γk : Ω̃ → NNm,N is such that Γk(ι(T, x)) ∈ N2−k(Ξ(ι(T, x)), where for a given set S ∈
NNm,N

N2−k(S) = {N : Rm → RN | inf
N′∈S

sup
x
‖N(x)−N′(x)‖`2 ≤ 2−k}

is the 2−k neighbourhood of the set S. In order to construct Γ̂ : Ω̂ → {0, 1} we proceed as follows. We
consider the set S2 ⊆ NNm,N given by

S2 = {N : Rm → RN |N(y) = x ∀ (x, y) ∈ Tb and N(0) = (1/2)v},

and we choose k ∈ N such that 1/(k− 1) ≤ 3/8, where we recall that 3/8 is the breakdown threshold from
part (i). We then define

Γ̂(T, x) =

0 if Γk(gι(T, x)) ∈ Nk−1(S2)

1 otherwise.

It remains to show that Γ̂(T, x) = Ξ̂(T, x) for all (T, x) ∈ Ω̂ and that Γ̂ is recursive. We start by showing
the recursiveness: Γk(gι(T, x)) is recursive, since gι : Ω̂ → Ω̃ is recursive by construction and Γk : Ω̃ →
NNm,N is recursive by assumption. Thus, in order to conclude that Γ̂ is recursive, it only remains to argue
that one can recursively check whether Γk(gι(T, x)) ∈ Nk−1(S2).

We notice first that it suffices to check whether ‖Γk(gι(T, x)(y′) − x′‖`2 ≤ k−1 for all (x′, y′) ∈
Tb ∪ {(0, (1/2)v)}. Thus, since the number of points in Tb is finite and all points in Tb ∪ {(0, (1/2)v)}
are rational we conclude that the task of checking whether Γk(gι(T, x)) ∈ Nk−1(S2) can be achieved
recursively in a finite number of steps.

At last we show that Γ̂(T, x) = Ξ̂(T, x) for all (T, x) ∈ Ω̂, we notice that it follows from the following
two arguments:

Ξ̂(T, x) = 1 =⇒ Γ̂(T, x) = 1: Since Ξ̂(T, x) = 1, T halts on input x. Thus, there exists an n′ ∈ N
such that T halts on x after n′ steps. Hence, the sequence gι(T, x) = {ιn}n∈N is equal to ι1n for all N ≥ n′

and Γk(gι(T, x)) ∈ N2−k(Ξ(ι1n)) ⊆ N2−k(S1), since Ξ(ι1n) ⊆ S1, where

S1 = {N : Rm → RN |N(y) = x ∀ (x, y) ∈ Tb, N(v +
θ

4n
e) = A(v +

θ

4n
e), and N(0) = 0}.

Then Γk(gι(T, x)) /∈ N1−k(S2) since if it was it would follow that

inf
N1∈S1,N2∈S2

d(N1,N2) ≤ inf
N1∈S1,N2∈S2

d(N1,Γk(gι(T, x)) + d(N2,Γk(gι(T, x))

≤ 2−k + k−1 ≤ 1−(k−1) ≤ 3/8.

This contradicts the fact that {Ξ,Ω,M,Λ} satisfies assumption a) in proposition 4.13 with κ = 3/8, which
was established in part (i) using proposition 5.1. Thus we can conclude that Γ̂(T, x) = 1.

Ξ̂(T, x) = 0 =⇒ Γ̂(T, x) = 0: Since Ξ̂(T, x) = 0, T does not halt on input x. Thus gι(T, x) is equal
to the sequence {ι1n}n∈N and therefore, by assumption, Γk(gι(T, x)) ∈ N2−k(Ξ(ι0)) ⊆ Nk−1(S2), since
{ι1n}n∈N is an inexact representation of ι0 in the sense of eq. (4.5). Thus, we can conclude that Γ̂(T, x) = 0.
This finishes the proof. �
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5.3. Formal statement and proof of Theorem 2.1. In the language of the SCI hierarchy Theorem 2.1 has
the following formal form.

Theorem 5.4. For any integers N > m and any βmax ≥ βmin > 0, consider any fixed non-zero linear
map A : RN → Rm such that the spectrum Sp(AA∗) ⊂ [β2

min, β
2
max]. Then, for any rational ε1 ∈ (0, 3/8]

and any integer ` ≥ 2, there exists a collection of initial domainsM1 ⊂ RN , a domain Ω (as described in
§1.1) of training sets T with |T | = `, T ⊆ B1(0), a D ∈ N and a mapping ΞD : Ω ⇒ NNm,N as in (1.7).
In particular, all optimal neural networks NM1

opt ∈ ΞD(T ) 6= ∅ have uniformly bounded (by D) Jacobians.
However, the following happens simultaneously:

(i) For the computational problem {Ξ,Ω,M,Λ}∆1 , with Ξ as in (1.6), we have εsPB(p) ≥ ε1 for
p ∈ [0, 1/2). In particular, no algorithm, not even randomized, can approximate the optimal
neural network NM1

opt for all inputs T ∈ Ω to accuracy ε1 (with probability greater than p > 1/2

in the randomized case).
(ii) However, for any K ∈ N, δ ∈ (0, ε1) and any algorithm Γ such that NT ,ε = Γ(T , ε) is a NN

that approximates an optimal neural network NM1
opt ∈ ΞD(T ) to accuracy ε ∈ (ε1, 2ε1 − δ] for all

T ∈ Ω we have the following: There exists infinitely many T ∈ Ω such that the Jacobian satisfies
‖DNT ,ε(c)‖op ≥ K for some c ∈ Rm. In particular, the Lipchitz constant of the NN will blow up.

(iii) There does exists an algorithm Γ such that NT ,ε = Γ(T , ε) is a NN that approximates the optimal
neural network NM1

opt = Ξ(T ) to accuracy ε > 2ε1 for all T ∈ Ω with the property that there exists
a K ∈ N such that the Jacobian satisfies ‖DNT ,ε(c)‖op ≤ K for all c ∈ Rm and for all T ∈ Ω.

Proof of Theorem 5.4. Step I: Constructing the computational problems. Our aim is to construct a domain
Ω ⊆ T 1

` , where T 1
` is as defined in eq. (4.6), of the form Ω = {ι1n}n∈N ∪ {ι2n}n∈N, where {ι1n}n∈N and

{ι2n}n∈N are sequences of training sets that satisfy assumptions a)− c) in proposition 4.13. Indeed, we use
a very similar construction as in the proof of Proposition 5.1, but with slight modifications. Let Tb ⊆ T 1

`−2

be such that Tb ⊆ ker(A)⊥ × A(ker(A)⊥), and such that the points in π1(Tb) are non-zero and distinct,
where π1(Tb) = {x : (x, y) ∈ RN × Rm, (x, y) ∈ Tb}. Further, let v ∈ ker(A) be a fixed element such
that ‖v‖`2 = 4ε1, and let e ∈ ker(A)⊥ be some fixed unit vector. At last, we require that

B+
1/4(v) * Tb, where B+

1/4(v) = {z ∈ RN | v ≤` z ≤` v + 1/4v}

is the potentially empty set where ≤` denotes the lexicographic ordering, as defined in the proof of proposi-
tion 5.1. We observe that, even with these restrictions, there exists infinitely many different choices for Tb.
We define the sequences {ι1n}n∈N and {ι2n}n∈N as follows: for each n ∈ N let

ι1n = Tb
⋃
{(0, 0), (

θ

4n
e+ v,A(

θ

4n
e+ v))}

N⋃
i=1

{(ε1ei, A(ε1ei))}

and

ι2n = Tb
⋃
{(0, 0), (v, 0)}

N⋃
i=1

{(ε1ei, A(ε1ei))},

where θ = ‖A‖−1
op if ‖A‖op > 1 and θ = 1 otherwise, and where ei are the standard unit vectors in RN for

i = 1, . . . , N . It is not hard to check that ι1n, ι
2
n ⊆ T 1

` for all n ∈ N. We define the corresponding setsM1
1,n

andM2
1,n as follows: Let

M1
1,n = π1(Tb) ∪ {0,

θ

4n
e+ v}, M2

1,n = π1(Tb) ∪ {0, v}, n ∈ N.

Due to the fact that the underlying metric spaces M1
1,n and M2

1,n are the exactly same as in the proof
of Proposition 5.1, we can prove that there exists an optimal neural network for each inverse problem
(A,M1

1,n) and (A,M2
1,n) for each n ∈ N – with uniformly bounded Jacobians – in exactly the same way

as in the proof of Proposition 5.1. We omit the details.
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Step II: Proving (i). By exactly the same argumentation as in points a)−c) in the proof of proposition 5.1,
we can prove that {ι1n}n∈N and {ι2n}n∈N satisfy assumptions a)− c) in proposition 4.13 with κ = 2ε1. Part
(i) follows from this.

Step III: Proving (ii). Choose K ∈ N and δ ∈ (0, ε1) and suppose there is an algorithm Γ such
that NT ,ε = Γ(T , ε) is a NN that approximates any optimal neural network NM1

opt ∈ Ξ(T ) to accuracy
ε ∈ (ε1, 2ε1 − δ] for all T ∈ Ω. We pick an n̂ ∈ N such that K ≤ 2δ4n̂. Then for any n ≥ n̂ choose
T = {(0, 0), ( θ

4n + v,A( θ
4n + v)} ∪ Tb – note that it is clear that we have infinitely many such choices of

T . Now consider

‖NT ,ε(0)−NT ,ε(A(
θ

4n
e))‖`2

= ‖NT ,ε(0)−NM1
opt (0) + NM1

opt (0)−NM1
opt (A(

θ

4n
e)) + NM1

opt (A(
θ

4n
e))−NT ,ε(A(

θ

4n
e))‖`2

≥ ‖NM1
opt (0)−NM1

opt (A(
θ

4n
e))‖`2 − ‖NT ,ε(0)−NM1

opt (0)‖`2

− ‖NT ,ε(A(
θ

4n
e))−NM1

opt (A(
θ

4n
e))‖`2 ≥ ‖N

M1
opt (0)−NM1

opt (A(
θ

4n
e))‖`2 − 4ε1 + 2δ,

(5.23)

where the last inequality follows from the assumption that NT ,ε = Γ(T , ε) is a NN that approximates the
optimal neural network NM1

opt ∈ Ξ(T ) to accuracy ε ∈ (ε1, 2ε1 − δ]. By the mean value inequality [1,
Proposition 2.4.8] it follows that there exists a c ∈ Rm such that

‖DNT ,ε(c)‖op‖A(
θ

4n
e)‖`2 ≥ ‖NT ,ε(0)−NT ,ε(A(

θ

4n
e))‖`2 . (5.24)

Moreover, from the proof of Proposition 5.1, we know that NM1
opt (0) = 0 and that NM1

opt (A( θ
4n e)) = θ

4n e+v,
which gives us that ‖NM1

opt (0) −NM1
opt (A( θ

4n e))‖2`2 = ‖ θ4n e + v‖2`2 = θ
4n ‖e‖2`2 + ‖v‖2`2 = θ

4n + ‖v‖2`2 >
‖v‖2`2 . Combing this with our previous calculations in (5.23) and (5.24) we get that

‖DNT ,ε(c)‖op‖A(
θ

4n
e)‖`2 ≥ ‖NT ,ε(0)−NT ,ε(A(

θ

4n
e))‖`2

≥ ‖NM1
opt (0)−NM1

opt (A(
θ

4n
e))‖`2 − 4ε1 + 2δ

> ‖v‖`2 − 4ε1 + 2δ = 2δ,

and by our choice of n̂ and the fact that n ≥ n̂ we can conclude that ‖DNT ,ε(c)‖op > 2δ4n ≥ 2δ4n̂ ≥ K.
Step IV: In order to prove part (iii) it remains to show that there exists an algorithm Γ : Ω̃ × R+ →

NNm,N that works on inexact input, such that for each T̃ ∈ Ω̃, Γ constructs a neural network Γ(T̃ , ε) such
that

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)− x‖`2 ≤ ε, (5.25)

for any ε > 2ε1. Our strategy is to construct an algorithm that approximates the pseudo inverse A† of A.
In order to achieve this we first need to obtain an approximation of A, which we can do by running the
following algorithm for any T̃ ∈ Ω̃ :

Inputs: Oracles for all (x̃, ỹ) ∈ T̃ , the dimension N ∈ N, and k ∈ N.
Outputs: An approximation Ak of A such that ‖Ak −A‖op ≤ 2−k.

1. Identifying the elements (x̃, ỹ) ∈ T̃ that are inexact representations of
(ε1ei, A(ε1ei)) ∈ B for i = 1, . . . , N.

Choose k′ such that 2−k
′ ≤ ε1

N · 2
−k and run the following pseudo code:

for i = 1, . . . , N :

for x̃ ∈ π1(T̃ ) :

if ‖ε1ei − x2‖`2 ≤ 2−2 = 1/4:
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(Then we have found the pair (x̃, ỹ) that approximates (ε1ei, A(ε1ei))).
Set Aik = 1

ε1
· ỹk′ (where ỹk

′
is as defined in eq. (5.13))

break.
2. Use the elements in B̃ that we identified in step 1 to construct the desired approximation of A.

Set Ak = (A1
k, . . . , A

N
k ) and return Ak.

We notice that Ak yields the requested approximation since

‖Ak −A‖op ≤
N∑
i=1

‖Aik −Ai‖`2 =

N∑
i=1

‖ 1

ε1
ỹk
′

i −A(ei)‖`2

≤
N∑
i=1

‖ 1

ε1
ỹk
′

i −
1

ε1
A(ε1ei)‖`2 ≤

N∑
i=1

1

ε1
· 2−k

′
≤ N · 1

ε1
· ε1
N
· 2−k = 2−k

since ỹk
′

i is such that ‖ỹk′i − yi‖`2 = ‖ỹk′i −A(ε1ei)‖`2 ≤ 2−k
′ ≤ ε1

N · 2
−k for all i = 1, . . . , N .

Next, we define h : N→ N by

h(j) = min{µ ∈ N | ∀r ≥ µ , sup
y∈

⋃
FM2

‖A†r(y)−A†(y)‖`2 ≤ 2−j}. (5.26)

We will now estimate an upper bound for h by finding a lower bound for 2−h that can be recursively
computed. By the assumption that A is full rank we have that A† can be expressed as A† = AT (AAT )−1.
Claim: We claim that if r ∈ N is such that 2−r ≤ 1

2
1
4 (1 + βmax)−2α42−j , with α = min{1, βmin}, then

2−r is a lower bound for 2−h(j).
We now proceed with verifying this claim. Indeed, let r ∈ N be as described in the claim above, and such
thatAr is of full rank. We notice that it is always possible to find such an r, since the smallest singular value
of A is bounded strictly away from 0. Moreover, A†r = ATr (ArA

T
r )−1 can be recursively computed since

both matrix multiplication and calculating the inverse of a matrix can be done recursively. We now have that

‖A†r −A†‖op = ‖ATr (ArA
T
r )−1 −AT (AAT )−1‖op

= ‖ATr (ArA
T
r )−1 +ATr (AAT )−1 −ATr (AAT )−1 −AT (AAT )−1‖op

≤ ‖ATr ‖op‖(ArATr )−1 − (AAT )−1‖op + ‖ATr −AT ‖op‖(AAT )−1‖op

≤ (βmax + 2−r)‖(ArATr )−1 − (AAT )−1‖op + ‖Ar −A‖op
1

β2
min

≤ (βmax + 1)‖(ArATr )−1 − (AAT )−1‖op +
1

4
2−j .

(5.27)

We continue our calculations by considering the term ‖(ArATr )−1− (AAT )−1‖op. By the second resolvent
identity we get that

‖(ArATr )−1 − (AAT )−1‖op ≤ ‖(ArATr )−1‖op‖ArATr −AAT ‖op‖(AAT )−1‖op, (5.28)

and by considering the term ‖(ArATr )−1‖op we observe that

‖(ArATr )−1‖op ≤ ‖(ArATr )−1 − (AAT )−1‖op + ‖(AAT )−1‖op
= ‖(ArATr )−1‖op‖ArATr −AAT ‖op‖(AAT )−1‖op + ‖(AAT )−1‖op,

where the second equality again follows by the second resolvent identity. This implies that

‖(ArATr )−1‖op(1− ‖(AAT )−1‖op‖ArATr −AAT ‖op) ≤ ‖(AAT )−1‖op. (5.29)
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Next, we claim that ‖(AAT )−1‖op‖ArATr −AAT ‖op < 2−j . Indeed, with Er = Ar −A, we see that

‖(AAT )−1‖op‖ArATr −AAT ‖op =
1

β2
min

‖(A+ Er)(A+ Er)T −AAT ‖op

≤ 1

α2
‖AAT +AETr + ErAT + ErETr −AAT ‖op

≤ 1

α2
(‖AETr ‖op + ‖ErAT ‖op + ‖Er‖2op)

≤ 1

α2
(βmax2−r + 2−rβmax + 2 · 2−r)

=
1

α2
· 2 · 2−r(βmax + 1) ≤ 1

4
α2(βmax + 1)−12−j < 2−j ,

(5.30)

by our choice of 2−r. Combining this with eq. (5.29) and that j ≥ 1 we see that

‖(ArAr)−1‖op ≤ ‖(AAT )−1‖op/(1− 2−j) ≤ 2‖(AAT )−1‖op. (5.31)

Hence, it follows from eq. (5.28), eq. (5.30) and eq. (5.31) that

‖(ArATr )−1 − (AAT )−1‖op ≤ 2‖(AAT )−1‖2op‖ArATr −AAT ‖op

≤ 2
1

β4
min

‖ArATr −AAT ‖op ≤ 2
1

β4
min

2 · 2−r(βmax + 1).

finally, by inserting this back into eq. (5.27), we conclude that

‖A†r −A†‖op ≤ 2(βmax + 1)2 1

β4
min

· 2 · 2−r +
1

β2
min

‖Ar −A‖op

≤ (βmax + 1)2 1

β4
min

· 4 · 2−r +
1

β2
min

2−r ≤ 1

2
2−j +

1

2
2−j = 2−j ,

by our choice of 2−r. At last, since ‖y‖`2 ≤ 1 for all y ∈
⋃
FM2 we get that

sup
y∈

⋃
FM2

‖A†r(y)−A†(y)‖`2 ≤ ‖A†r −A†‖op ≤ 2−j ,

which was what we wished to prove.
We are finally ready to present our algorithm Γ : Ω̃ × R+ → NNm,N . Let ε2 > 0 be rational and such

that 2ε1 + ε2 ≤ ε, and note that such an ε2 always exists because ε is strictly bigger then 2ε1. Then, for any
T̃ ∈ Ω̃, Γ(T̃ , ε)(y) does the following: It applies A†r to y and adds the bias term 1

2v, where r is chosen such
that ‖A†r − A†‖op ≤ ε2. We notice that we can compute such an r recursively, by computing a j ∈ N such
that 2−j ≤ ε2 and then computing an r such that 2−r ≤ 1

2
1
4 (1 + βmax)−2α42−j with α = min{1, βmin}

(then r is an upper bound for h(j) in eq. (5.26)). More precisely, let

Γ(T̃ , ε)(y) = A†r(y) +
1

2
v,

where r satisfies 2−r ≤ 1
2

1
4 (1 + βmax)−2α42−j , with α = min{1, βmin} and 2−j ≤ ε2, and where

v ∈ ker(A) with ‖v‖`2 = 4ε1. It only remains to show that

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)−NM1
opt (y)‖`2 ≤ ε

for all T̃ ∈ Ω̃, and that ‖DΓ(T̃ , ε)(c)‖op ≤ K for all c ∈
⋃
FM2 and some K ∈ N. Indeed, we start by

noticing that

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)−NM1
opt (y)‖`2 = sup

y
‖A†r(y) +

1

2
v −NM1

opt (y)‖`2

≤ sup
y
‖A†(y) +

1

2
v −NM1

opt (y)‖+ ‖A†r −A†‖op,

where the last inequality follows since Ar(y) = A(y) + Ar(y) − A(y) and ‖y‖`2 ≤ 1. Now, we consider
the term ‖A†(y) + 1

2v − Nopt(y)‖`2 and show that it must always be less than 2ε1. Indeed, we notice
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that if y ∈ A(M1
n) for some n ∈ N, then either Nopt(y) = x for some x ∈ ker(A)⊥ (in the case where

y ∈ π2(Tb)∪ {0}), or Nopt(y) = θ
4n e+ v (in the case where y = A( θ

4n e+ v)). In the first case we get that

‖A†(y) +
1

2
v −NM1

opt (y)‖`2 = ‖x+
1

2
v − x‖`2 =

1

2
‖v‖`2 =

1

2
4ε1 = 2ε1,

and in the second case we get that

‖A†(y) +
1

2
v −NM1

opt (y)‖`2 = ‖x+
1

2
v − x− v‖`2 =

1

2
‖v‖`2 =

1

2
4ε1 = 2ε1.

On the other hand, if y ∈ A(M2) we either have that NM1
opt (y) = x for some x ∈ ker(A)⊥ (in the case

where y ∈ π2(Tb)), or NM1
opt (y) = 1

2v (in the case where y = 0 or in the case where y = v). In the first case
we get the exact same bound as above, while in the second case we get that

‖A†(y) +
1

2
v −NM1

opt (y)‖`2 = ‖1

2
v − 1

2
v‖`2 = 0.

Using this, and the fact that ‖A†r −A†‖op ≤ 2−j ≤ ε2, this we arrive at the conclusion that

sup
y∈

⋃
FM2

‖Γ(T̃ , ε)(y)−NM1
opt (y)‖`2 ≤ sup

(x,y)

‖A†(y) +
1

2
v −NM1

opt (y)‖+ ‖A†r−A†‖op ≤ 2ε1+ ε2 ≤ ε,

Moreover, since Γ(T̃ , ε) is a neural network, we can conclude that Γ approximates NM1
opt to accuracy ε for

all T̃ ∈ Ω̃. At last, we have that for NT ,ε = Γ(T̃ , ε), it immediately follows that

‖DNT ,ε(c)‖op = ‖A†r‖op ≤ ‖A†‖op + 2−j ≤ 1

βmin
+ ε2, ∀ c ∈

⋃
F
M2.

This establishes part (iii). �
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