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Mathematical Tripos Part II Lent Term 2025

General Relativity Dr. J.M. Evans

Example Sheet 3

1. The Ricci identity for a vector field V µ is ∇α∇βV
µ −∇β∇αV

µ = Rµ
ναβV

ν .

(i) Deduce the corresponding result for a covector fieldWµ by considering ∇α∇β(V
µWµ)−∇β∇α(V

µWµ). Is there
an easier way to find this result?

(ii) Given two vector fields Uµ and V µ, evaluate ∇α∇β(U
µV ν) − ∇β∇α(U

µV ν) . Deduce that, for an arbitrary
tensor field Tµν ,

∇α∇βT
µν −∇β∇αT

µν = Rµ
σαβT

σν +Rν
σαβT

µσ.

Hence show that ∇α∇βT
αβ = ∇β∇αT

αβ , for any tensor field Tαβ .

2. Show that, if a vector Sα is parallelly transported along an affinely parametrized geodesic xα(λ) with tangent
vector Tα, then gαβ S

αT β is constant along the curve.

Consider the parallel transport of a vector Sα = (Sθ, Sφ) around a closed path on the unit 2-sphere, with θ, φ the
usual polar coordinates. The path consists of the following four segments:

(i) θ = 1
2π, φ0 ≥ φ ≥ 0 , (ii) 1

2π ≥ θ ≥ θ0, φ = 0 , (iii) θ = θ0, 0 ≤ φ ≤ φ0 , (iv) θ0 ≤ θ ≤ 1
2π, φ = φ0 ,

and Sα = (1, 0) at the starting point, θ = 1
2π, φ = φ0 (on the equator).

(a) Sketch a picture in the case θ0 = 0 (so the path is a spherical triangle with one vertex at the North pole) using
the result of the first paragraph (no further calculation required) and hence show that the angle between the initial
and final vectors Sα is proportional to the area enclosed by the path.

(b) Verify that for 0 < θ0 <
1
2π the parallel transport equation has the following solutions for Sα on each segment:

(i) (1, 0) , (ii) (1, 0) , (iii) ( cos(c0φ) , − sin(c0φ)/ sin θ0 ) , (iv) ( cos(c0φ0) , − sin(c0φ0)/ sin θ ) , where c0 = cos θ0 .

Write down Sα at the end point of the path and check that, when θ0 → 0, this agrees with the result in part (a).

[ The non-zero connection components on the 2-sphere are Γ θ
φ φ = − sin θ cos θ and Γ φ

θ φ = Γ φ
φ θ = cot θ . ]

3. Show, by considering its symmetries, that the Riemann curvature tensor for a metric on a 2-dimensional manifold
has only one independent component. Show further that for such a metric

Rαβγδ =
1

2
R(gαγgβδ − gαδgβγ) .

Verify this result using the connection components for 2-dimensional de Sitter spacetime (obtained in question 9 on
Example Sheet 1).

4. Let φ be a scalar field in curved spacetime such that

∇α∇β φ = Rαβ ,

where Rαβ is the Ricci tensor. Show that

∇α(∇β∇βφ) = −2Rαβ∇βφ

and hence deduce that ∇αφ∇αφ+R is constant.

[ Hint: use the Ricci identity and the contracted Bianchi identity, ∇βRαβ = 1
2∇αR . ]
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5. The Maxwell tensor Fαβ for the electromagnetic field in curved spacetime is given in terms of a vector potential
Aα by Fαβ = ∇αAβ −∇βAα. Show that this implies ∇[γFαβ] = 0. Show further that if ∇βF

αβ = 0, then the energy
momentum tensor

Tαβ = Fα
γF

βγ − 1

4
gαβFγδF

γδ ,

is conserved, i.e. ∇βT
αβ = 0 .

6. Let ξα be a Killing covector field, satisfying ξα;β + ξβ;α = 0 (see question 5 on Example Sheet 2). Use the Ricci
identity and Rα

[βγδ] = 0 to show that

ξα;βγ = −Rδ
γαβ ξδ .

In the case of Minkowski space, integrate this equation twice and deduce that there are 10 independent Killing vectors.

7. Starting from the formula for the Levi-Civita connection, find an expression for the Riemann tensor Rαβγδ in local
inertial coordinates. Hence prove that

Rαβγδ = Rγδαβ .

8. Consider Newtonian spacetime with (Cartesian) coordinates xα = (t, xi). Show that the motion of a freely-falling
particle can be described by a curve xα(λ), where

d2t

dλ2
= 0 ,

d2xi

dλ2
+

∂Φ

∂xi

( dt

dλ

)2

= 0 ,

for a suitable parameter λ and Newtonian gravitational potential Φ(xi). Regarding this as a geodesic equation, read
off the Newtonian connection components and deduce that the corresponding curvature is given by

Ri
0j0 = −Ri

00j =
∂2Φ

∂xi∂xj
, Rα

βγδ = 0 otherwise .

Can this Newtonian connection and curvature arise from a metric? [ Hint: For the standard Levi-Civita connection,

what symmetries does the Riemann tensor possess? ]

9. The Lie derivative (LξV )α of a vector field V α with respect to a vector field ξα (assumed to be timelike) is defined
by the following conditions:

(i) If {xα} is a coordinate system in which ξα = (1, 0, 0, 0), then

(LξV )α =
∂V α

∂x0
= ξβ

∂V α

∂xβ
,

and (ii) (LξV )α transforms as a vector. Show that, in a general coordinate system,

(LξV )α = ξβ∇βV
α − V β∇βξ

α .

Suppose, in addition, that the Lie derivative Lξφ of a scalar field φ with respect to a vector field ξα is defined in a
general coordinate system {xα} by

Lξφ = ξα
∂φ

∂xα

and that the Lie derivative obeys the usual Leibniz rule when applied to a tensor product. Find the Lie derivative
(LξU)α of a covector field Uα.

Write down an expression for the Lie derivative with respect to ξα of a (0, 2) tensor Tαβ and show that the condition
for ξα to be a Killing vector field (as in question 6 above) is (Lξg)αβ = 0, where gαβ is the metric tensor.
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10. (i) Let M be an invertible matrix. Show that under a small change δM , the corresponding change in the
determinant is, to first order, δ(detM) = (detM) tr(M−1δM) .

[ Hint: if the entries of a matrix A are small then, to first order, det(I+A) = 1+trA, where I is the identity matrix. ]

(ii) Let gαβ be a metric with Lorentzian signature and let g = det(gαβ). Use the result in (i) to show that

Γ β
α β =

1

2g

∂g

∂xα
=

1√−g
∂

∂xα
√−g ,

where Γ γ
αβ is the Levi-Civita connection. (Note that g < 0 for a metric with Lorentzian signature.)

(iii) A tensor density of weight q is defined to be a quantity that transforms as a tensor under a change in coordinates
from {xµ} to {x̃α} but with an additional factor of ∆q, where ∆ = det(∂xµ/∂x̃α) , the Jacobian. Show that g transforms
as a scalar density of weight 2.

(iv) For ψ a scalar density of weight q, the covariant derivative is defined by

∇αψ =
∂ψ

∂xα
− q Γ β

αβψ .

Show that ∇αψ is a covector density of weight q.

Comments to: J.M.Evans@damtp.cam.ac.uk
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