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Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared
with multicellular Volvocine green algae
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A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular
organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamy-
domonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a
spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they
lack a nervous system and intercellular connections; steering is a consequence of the response of individual
cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the
flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned
to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the
flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we
show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations
around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating
light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse
and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In
showing that the adaptive timescales in Volvocine algae are tuned to the organisms’ rotational periods across
three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in
which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas,

the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.
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I. INTRODUCTION

A vast number of motile unicellular and multicellular
eukaryotic microorganisms exhibit phototaxis, the ability to
steer toward a light source, without possessing an image-
forming optical system. From photosynthetic algae [1] that
harvest light energy to support their metabolic activities to
larvae of marine zooplankton [2] whose upward phototactic
motion enhances their dispersal, the light sensor in such or-
ganisms is a single unit akin to one pixel of a CCD sensor or
one rod cell in a retina [3]. In zooplanktonic larvae there are
two single rhabdomeric photoreceptor cells [4], while motile
photosynthetic microorganisms such as green algae [5] have a
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“light antenna” [6], which colocalizes with a cellular structure
called the eyespot, a carotenoid-rich orange stigma. For these
simple organisms, the process of vectorial phototaxis, motion
in the direction of a source rather than in response to a light
gradient [7], relies on an interplay between the detection of
light by the photosensor and changes to the actuation of the
apparatus that confers motility, namely their one or more
flagella. Evolved independently many times [8], the common
sensing/steering mechanism seen across species involves two
key features.

The first attribute is a photosensor that has directional
sensitivity, detecting only light incident from one side. It was
hypothesized long ago [6] that in green algae this asymmetry
could arise if the layers of carotenoid vesicles behind the
actual photosensor act as an interference reflector. In zoo-
plankton this “shading” role is filled by a single pigment cell
[4]. This directionality hypothesis was verified in algae by
experiments on mutants without the eyespot, that lacked the
carotenoid vesicles [9], so that light could be detected what-
ever its direction. Whereas wild-type cells performed positive
phototaxis (moving toward a light source), the mutants might
naively have been expected to be incapable of phototaxis. Yet,
they exhibited negative phototaxis, a fact that was explained as
a consequence of an effect proposed earlier [10]; the algal cell
body functions as a convex lens with refractive index greater
than that of water. Thus, a greater intensity of light falls on the
photosensor when it was illuminated from behind than from
the front, and a cell facing away from the light erroneously
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FIG. 1. Phototaxis in Chlamydomonas. Cell geometry (in box)
involves the primary axis €; around which the cell spins at angular
frequency ws, the axis €; in the flagellar beat plane, and &, = &, x &;.
As the cell swims and spins around &;, its eyespot (red) moves in and
out of the light shining in the direction of the large blue arrows. This
periodic light stimulation leads to alternating cis and trans flagella
dominance, producing rotations around €; and hence a phototactic
turn.

continues swimming in that direction, as if it were swimming
toward the light.

The second common feature of phototactic microorgan-
isms is a natural swimming trajectory that is helical. Spiral
swimming has been remarked upon since at least the early
1900s, when Jennings [11] suggested that it served as a way
of producing trajectories that are straight on the large scale,
while compensating for inevitable asymmetries in the body
shape or actuation of cilia, and Wildman [12] presciently
observed that chirality of swimming and ciliary beating must
ultimately be understood in terms of the genetic program
contained within chromosomes. While neither offered a func-
tional purpose related to phototaxis, Jennings did note earlier
[13,14] that when organisms swim along regular helices they
always present the same side of their body to the outside. This
implies that during regular motion the photosensor itself also
has a fixed relationship to the helix.

In Chlamydomonas, motility derives from the breaststroke
beating of two oppositely oriented flagella emanating from
near the anterior pole of the cell body, as depicted in
Fig. 1. The flagella, termed cis and trans for their proxim-
ity to the eyespot, define a plane, the unit normal to which
is the vector &;. Historical uncertainties around the pre-
cise three-dimensional swimming motion of Chlamydomonas
were resolved with the work of Kamiya and Witman [15], the
high-speed imaging study of Riiffer and Nultsch [16] and later
work by Schaller er al. [17], who together demonstrated three
features: (i) the eyespot is typically located on the equatorial
plane of the cell, and is midway between &; and the vector
&, that lies within the flagellar plane, pointing toward the
cis flagellum, (ii) cells rotate counterclockwise (when viewed
from behind) the axis &; at frequency f; ~ 1.5-2.5Hz (f, =
1.67 4+ 0.35 Hz in a recent direct measurement [18]), and (iii)
positively phototactic cells swim along helices such that the
eyespot always faces outward. The rotation around &; was
conjectured to arise from a small nonplanarity of the beat, as

has been recently verified [19], while helical swimming arises
from rotation around &; due to a slight asymmetry in the two
flagellar beats.

It follows from the above that the eyespot of a cell whose
swimming is not aligned to the light receives an oscillating
signal at angular frequency w3 = 2x f;. Detailed investiga-
tion into the effect of this periodic signal began with the
work of Riiffer and Nultsch, who used cells immobilized on
micropipettes to enable high-speed cinematography of the
waveforms. Their studies [20,21] of beating dynamics in a
negatively phototactic strain showed the key result that the
cis and trans flagella responded differently to changing light
levels by altering their waveforms in response to the periodic
steps-up and steps-down in signals that occur as the cell ro-
tates. This result led to a model for phototaxis [17] that divides
turning into two phases (Fig. 1): phase I, in which the eyespot
moves from shade to light, causing the trans flagellum to
increase transiently its amplitude relative to the cis flagellum,
and phase 11, in which the eyespot moves from light to shade,
leading to transient beating with the opposite asymmetry. Both
phases lead to rotations, around &;, and turns toward the light.
The need for an asymmetric flagellar response was shown
in studies of the mutant pzx/ [22,23], which lacks calcium-
dependent flagellar dominance [24] and cannot do phototaxis.

These transient responses were studied further [25] through
the photoreceptor current (PRC) that can be measured in the
surrounding fluid. Subjecting a suspension of immotile cells
(chosen to avoid movements) to rectified sinusoidal light sig-
nals that mimic those received by a rotating cell, it was found
that the PRC amplitude displays a maximum as a function of
frequency, with a peak close to the body rotation frequency f.
This “tuning” of the response curve was investigated in more
detail—in a negatively phototactic strain—in the important
work of Josef et al. [26], who projected the image of the
cell onto a quadrant photodiode whose analog signal could be
digitized at up to 4,000 samples per second. While this device
did not allow detailed imaging of the entire waveform, it was
able to capture changes in the forward reach of the two flagella
over significantly longer time series than previous methods.
Combined with later work that analyzed the signals within
the framework of linear systems analysis [27], these studies
showed how each of the two flagella exhibits a distinct, peaked
frequency response.

From the original measurements of transient PRCs induced
by step changes in light levels [25], it was evident that the
response in time was biphasic and adaptive—a rapid rise in
signal accompanied by slower recovery phase back to the
resting state—and the presence of two timescales is implicit in
the existence of the peak in the frequency response. More re-
cently, measurements of the flagella-driven fluid flow around
colonies of the multicellular alga Volvox carteri [28] showed
again this adaptive response, which could be described quanti-
tatively by a model used previously to describe chemotaxis of
both bacteria [29] and spermatozoa [30]. In a suitably rescaled
set of units, the two variables p and / in this model respond to
a signal s(¢) through the coupled ODEs

L.p=s—h—p, (1a)
t,h=s—h, (1b)
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FIG. 2. Master plot of adaptive timescales in Volvocine green
algae. For each of Chlamydomonas (this paper), Gonium [34], and
Volvox [28] the dimensionless product of the rotation frequency f,
around the primary body-fixed axis and the flagellar adaptive time
7, is plotted as a function of the organism radius R (bottom axis)
and typical cell number N (top axis). Uncertainties here and below
are standard deviations (SD), except where indicated to be standard
errors (SE).

where p governs some observable, i represents hidden bio-
chemistry responsible for adaptation, t, is the rapid response
time, and 7, is the slower adaption time. In bacteria, the
adaptive response is exhibited by the biochemical network
governing rotation of flagella, while for sperm, curvature of
the swimming path was altered linearly with p in response to
a chemoattractant.

The model (1) was incorporated into a theory of Volvox
phototaxis using a coarse-grained description of flagella-
driven flows akin to the squirmer model [31], with a dynamic
slip velocity u(6, ¢, t) as a function of spherical coordinates
on the colony surface. Without light stimulation, the velocity
is an axisymmetric function uy(0) that varies with the polar
angle 6, and is dominated by the first mode u; o siné [32]. In
the presence of light, we introduce response fields p(6, ¢, 1)
and h(0, ¢, t) obeying Egs. (1) over the entire surface, such
the slip velocity is

u(®, ¢, 1) =ue(0)[1 — (O)p©O, $,1)], 2

where the parameter 8 encodes the latitude-dependent pho-
toresponse of the flagella (strong at the anterior of the colony,
weak in its posterior). The swimming trajectories were then
obtained from integral relationships between the slip velocity
and the colony angular velocity [33].

Statistical analysis of many Volvox colonies shows that
there is tuning of the response in that the product f.7, ~ 1
(frta = 1.20 £ 0.44) [28], as indicated in Fig. 2. The sig-
nificance of the product f,7, being of order unity can be
understood as follows: when a region of somatic cells rotates
to face a light source, the fluid flow it produces will decrease
as p rapidly increases on a timescale 7,, and if the time 7,

it takes for p to recover is comparable to the colony rotation
period 1/f, then the fluid flow along the dark side will be
stronger than than on the light side, and the colony turns to
the light.

A similar tuning phenomenon is found with Gonium [34],
a member of the Volvocales typically composed of 16 cells
arranged in a flat sheet as in Fig. 2. The flagella of the four
central cells beat in a Chlamydomonas-like breaststroke wave-
form that propels the colony in the direction of the body-fixed
axis €3 perpendicular to the sheet. The flagella of the outer 12
cells beat at an angle with respect to the plane; their dominant
in-plane component rotates the colony at frequency f, about
€3, while the out-of-plane component adds to the propulsive
force of the central cells. Experiments show that the peripheral
cells display the same kind of biphasic, adaptive response
as do Volvox colonies. This light-induced “drop-and-recover
response” produces an axial force component f| from the
peripheral flagella of the form

fi@.0) = £211 = p@, 1), 3)

where fn(o) is the uniform component in the absence of photo-
stimulation. Again, the directionality of the eyespot sensitivity
leads to a photoresponse p that is greatest (and f that is small-
est) for those cells facing the light, and this nonuniformity in
/| leads to a net torque about an in-plane axis which, balanced
by rotational drag, leads to phototactic turning toward the
light. The data for Gonium also supports tuning, with the
product f,t, = 0.95 £ 0.50, as shown in Fig. 2.

In the present work we complete a triptych of studies in
Volvocine algae by examining Chlamydomonas, the unicellu-
lar ancestor of all others [35]. Our purpose is to construct, in a
manner that parallels that for Volvox and Gonium, a theory that
links the photoresponse of flagella to the trajectories of cells
turning to the light. We base the description on the kinematics
of rigid bodies, where the central quantities are the angular
velocities around body-fixed axes. This model bears some
similarity to an earlier study of phototaxis [36], in which the
asymmetric beating of flagella—modeled as spheres moving
along orbits under the action of prescribed internal forces
responding to light on the eyespot—was related to rotations
about body-fixed axes, but the response to light was taken to
be instantaneous and nonadaptive.

Results reported here on Chlamydomonas show that f, 1, is
close to unity (f,t, = 1.27 & 0.41), from which we infer that
tuning is an evolutionarily conserved feature spanning three
orders of magnitude in cell number and nearly two orders of
magnitude in organism radius (Fig. 2). We conclude that, in
evolutionary transitions to multicellularity in the Volvocine
algae, the ancestral photoresponse found in Chlamydomonas
required little modification to work in vastly larger multicel-
lular spheroids. The most significant change is basal body
rotation [37] in the multicellulars, in order that the two flagella
on each somatic cell beat in parallel, rather than opposed
as in Chlamydomonas. In Gonium, this arrangement in the
peripheral cells leads to colony rotation, while for the somatic
cells of Volvox the flagellar beat plane is tilted with respect to
meridional lines, yielding rotation around the primary colony
axis.
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The presentation below proceeds from small scales to
large, following a description in Sec. II of experimental meth-
ods used in our studies of the flagellar photoresponse of
immobilized cells at high spatiotemporal resolution, and of
methods for tracking phototactic cells. In Sec. III we arrive at
an estimate of rotations about the body-fixed axis &, arising
from transient flagellar asymmetries induced by light falling
on the eyespot, and thus a protocol to convert measured
flagella dynamics to angular velocities within the adaptive
model. Section IV incorporates those results into a theory
of phototactic turning. Exploiting a separation of timescales
between individual flagella beats, cell rotation, and phototac-
tic turning, we show how the continuous-time dynamics can
be approximated by an iterated map, and allow direct com-
parison to three-dimensional trajectories of phototactic cells.
By incorporating an adaptive dynamics at the microscale,
one can examine the speed and stability of phototaxis as a
function of the tuning parameter f,t, and deduce its optimum
value. These results explain the many experimental results
summarized above, and enable us to cast phenomenological
arguments [17] about the stability of phototaxis in Chlamy-
domonas in a mathematical form.

II. EXPERIMENTAL METHODS

A. Culture conditions

Wild-type Chlamydomonas reinhardtii cells (strain CC125
[38]) were grown axenically under photoautotrophic condi-
tions in minimal media [39], at 23°C under a 100 uE s 'm™2
illumination [40] in a diurnal growth chamber with a 14 : 10h
light-dark cycle.

B. Flagellar photoresponse of immobilized cells

The flagellar photoresponse of C. reinhardtii was cap-
tured at high spatiotemporal resolution using the experimental
setup shown in Fig. 3(a), which builds on previous stud-
ies [28,41,42]. Cells were prepared as described previously
[42]—centrifuged, washed, and gently pipetted into a bespoke
observation chamber made of polydimethylsiloxane (PDMS).
Chambers were mounted on a Nikon TE2000-U inverted
microscope with a x63 Plan-Apochromat water-immersion
long-working-distance (LWD) objective lens (441470-9900;
Carl Zeiss AG, Germany). Cells were immobilized via aspira-
tion using a micropipette (B100-75-15; Sutter, USA) that was
pulled to a @5-um tip, and the flagellar beat plane was aligned
with the focal plane of the objective lens via a rotation stage.
Video microscopy of immobilized cells was performed using
a high speed camera (Phantom v341; Vision Research, USA)
by acquiring 15 s movies at 2,000 fps.

The light used for photostimulation of cells was provided
by a 470 nm Light Emitting Diode (LED) (M470L3; Thor-
labs, USA) that was controlled via an LED driver (LEDD1B;
Thorlabs, USA), coupled to a @50-um-core optical fiber
(FGO50LGA; Thorlabs, USA). This fiber is much smaller than
that used in previous versions of this setup to accommodate
the smaller size of a Chlamydomonas cell relative to a Volvox
spheroid. The LED driver and the high-speed camera were
triggered through a data-acquisition card (NI PCle-6343; Na-
tional Instruments, USA) using in-house programs written in

@) — non-phototactic
filling aperture red light

chamber
access point

coverslip

optical fiber
coupled to —>»

blue LED x63 LWD

water-immersion lens

(b)

<— CCD-camera #2

<«—— LWD-microscope #2
LWD-microscope #1

red-light LED ring
CCD-camera #1

optical fiber
coupled to
blue LED

A

sample chamber y
red-light LED ring

FIG. 3. Experimental methods. Setups to measure (a) the flag-
ellar photoresponse of cells immobilized on a micropipette, and
(b) swimming trajectories of phototactic cells in a sample chamber
immersed in an outer water tank to minimize thermal convection, as
described in text.

LabVIEW 2013 (National Instruments, USA), for both step-
and frequency-response experiments. Calibration of the opti-
cal fiber was performed as follows: A photodiode (DET110;
Thorlabs, USA) was used to measure the total radiant power
W emerging from the end of the optical fiber for a range of
voltage output values (0-5 V) of the LED driver. The two
quantities were plotted and fitted to a power-law model which
was close to linear.

To avoid additional photostimulation and yet allow visu-
alization of the flagellar dynamics, cells were illuminated by
red light (638 nm) during studies of the flagellar response to
blue light. Through trial and error we found that an adap-
tation period of 5 min in complete darkness, followed by
5 min of red light illumination at an intensity three times
that used for imaging provided consistent results. Recording
commenced 1.55 s after the red light intensity was adjusted
down to the imaging value, and cells were stimulated at
frame 2896 (=1.45 s into the recording). A light intensity
of ~1uEs~ ' m™2 (at 470 nm) was found empirically to give
the best results in terms of reproducibility, sign, i.e., positive
phototaxis, and quality of response; we conjecture that the
cells could recover in time for the next round of stimula-
tion. For the step-response experiments, biological replicates
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were neepis = 3 with corresponding technical replicates necp, =
{4, 2, 2}. For the frequency-response experiments, biological
replicates were ne;s = 3 with each cell stimulated to the fol-
lowing amplitude-varying frequencies: 0.5 Hz, 1 Hz, 2 Hz,
4 Hz, and 8 Hz. Only cells that showed a positive sign of
response for all five frequencies are presented here. This was
the most challenging aspect of the experimental procedure. To
summarize, the total number of high-speed movies acquired
Was Hmov(ns] = 24. All downstream analysis of the movies was
carried out in MATLAB. Image processing and flagella tracking
was based on previous work [42], and new code was written
for force/torque calculations and flagellar photoresponse anal-
ysis.

C. Phototaxis experiments on free-swimming cells

Three-dimensional tracking of phototactic cells was per-
formed using the method described previously [43] with the
modified apparatus shown in Fig. 3(b). The experimental
setup comprised of a sample chamber suspended in an outer
water tank to eliminate thermal convection. The modified
sample chamber was composed of two acrylic flanges (ma-
chined in-house) that were clamped in a watertight manner
onto an open-ended square borosilicate glass tube (2cm X
2cm x 2.5cm; Vetrospec Ltd, UK). This design allowed
a more accurate and easy calibration of the field of view
and a simpler and better loading system of the sample via
two barbed fittings. This new design also minimized sample
contamination during experiments. Two 6-megapixel charge-
coupled device (CCD) cameras (Prosilica GT2750; Allied
Vision Technologies, Germany), coupled to two InfiniProbe
TS-160 (Infinity, USA) with Micro HM objectives were used
to achieve a larger working distance than in earlier work
(48 mm versus 38 mm) at a higher total magnification of x 16.
The source of phototactic stimulus was a 470 nm blue-light
LED (M470F1; Thorlabs, USA) coupled to a solarization-
resistant optical fiber (M22L01; Thorlabs, USA) attached
to an in-house assembled fiber collimator that included a
212.7 mm plano-convex lens (LA1074-A; Thorlabs, USA).
Calibration of the collimated optical fiber was performed
similarly to the experiments with immobilized cells. The cali-
bration took account of the thickness of the walls of the outer
water tank and the inner sample chamber, as well as the water
in between.

The two CCD cameras and the blue-light LED used for
the stimulus light were controlled using LabVIEW 2013 (Na-
tional Instruments, USA) including the image acquisition
driver NI-IMAQ (National Instruments, USA). The cameras
were triggered and synchronized at a frame rate of 10 Hz viaa
data-acquisition device (NI USB 6212-BNC; National Instru-
ments, USA). For every tracking experiment (Amov[3a) = 6),
two 300-frame movies were acquired (side and top) with the
phototactic light triggered at frame 50 (5 s into the recording).
The intensity of the blue-light stimulus was chosen to be
either 5 or 10 uE s~! m~2. To track the cells we used in-house
tracking computer programs written in MATLAB as described
in [43]. Briefly, for every pair of movies cells were tracked
from the side (x-z plane) and fop (x-y plane). The two tracks
were aligned based on their x component to reconstruct the
three-dimensional trajectories. The angle between the cell’s

FIG. 4. Flagellar photoresponse of an immobilized cell after a
step up in light. Light from the left (blue arrow) illuminates the
eyespot. Panels show overlaid waveforms of a single beat (a) in the
dark and (b) starting at 50 ms (52.5 ms) for the cis (trans) flagellum
after the step up. Scale bar is 5 um.

directional vector and the light was calculated at every time
point.

III. FLAGELLAR DYNAMICS

A. Forces and torques

We begin by examining the response of the two flagella of
an immobilized Chlamydomonas cell to a change in the light
level illuminating the eyespot. Figure 4 and Supplemental
Video 1 [44] show a comparison between the unstimulated
beating of the flagella and the response to a simple step
up from zero illumination. These are presented as overlaid
flagellar waveforms during a single beat in the dark and one
that started 50 ms after the step. In agreement with previous
work cited in Sec. I [21,26], we see that the transient response
involves the trans flagellum reaching further forward toward
the anterior of the cell, while the cis waveform contracts
dramatically. As shown by Riiffer and Nultsch [21], the step-
down response is essentially the opposite. The photoresponse
is adaptive; the marked asymmetry between the cis and trans
waveforms decays away over ~1-2s, restoring the approx-
imate symmetry between the two. This adaptive timescale is
much longer than the period 7y, ~ 20 ms of individual flagellar
beats.

We wish to relate transient flagellar asymmetries observed
with immobilized cells, subject to time-dependent light stim-
ulation, to cell rotations that would occur for freely swimming
cells. We begin by examining the beating of unstimulated cells
to provide benchmark observations. We analyze high-speed
videos to obtain the waveforms of flagella of length L, radius
a, in the form of moving curves r(A,t) parameterized by
arclength A € [0, L] and time. Within resistive force theory
(RFT) [45,46], and specializing to planar curves, the hydro-
dynamic force density on the filament is

f(r, 1) = —(¢ohh + gytt) -1, (4, 1), 4)

where t = r, and f (with fi; = € jif ;) are the unit normal and
tangent at A, and ¢, and ¢ are drag coefficients for motion
perpendicular and parallel to the filament. We assume the
asymptotic results &, =4mp/c; and ¢ = 2w u/cy, where
c; =1In(L/e) and ¢ = In(L//e), with £ = L/a the aspect
ratio. Table I gives typical values of the cell parameters; with
L ~ 108, we have c¢; ~ 5.2 and ¢ ~ 4.2. To complete the
analysis, we adopt the convention shown in Fig. 5(a) to define
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TABLE I. Geometry of flagellar beats. Data are from the present
study except for the flagellum radius.

Quantity Symbol Mean £ SD
Flagellum length L 13.5 £ 0.8 um
Flagellum radius [47] a 0.125 uym
Cell-body radius R 4.4 + 0.3um
Beat frequency fo 43.2 £ 8.0Hz
Anchor angle Da (0.05£0.01)x
Initial angle Qo (0.26 + 0.05)7
Sweep angle O (0.33 £ 0.06)

the start of a beat, in which chords drawn from the base to a
point of fixed length on each flagellum define angles ®¢is trans
with respect to €;. Local minima in O trans(t) [Fig. 5(b)]
define the beat endpoints.

Using a hat (") to denote quantities measured without pho-
tostimulation, Fig. 6 shows the results of this analysis for the
propulsive component of the total force,

L
ﬁ(t)=é3-/ drt(n, 1), (5)
0

and the torque component around &;,

L
Tt)y=4é - / dir x £(h, 1), (6)
0

where r is measured from the cell center. The smoothness of
the data arises from the large number of beats over which the
data are averaged. The force F varies sinusoidally in time,
offset from zero due to the dominance of the power stroke over
the recovery stroke, with a peak value F* = 16.0 + 5.2pN
and mean over a beat period of (F) = 3.6 & 1.1 pN per flag-
ellum. For the biflagellated cell we find a peak force of

2F*=32.0+104 pN. This value is in general agreement

0 0.1 0.2

FIG. 5. Flagellar beat cycles. (a) Angles ® on each flagellum
(red for cis, blue for trans), relative to symmetry axis €; (green) of
the cell, are used to define the cycle. Scale bar is 5 um. (b) Typical
time series of the two angles.

()|

0 02 04 06 08 1
t/Ty

FIG. 6. Flagellar forces and torques of unstimulated cells.
Propulsive force (a) and torque about the cell center (c) of cis (red)
and trans (blue) flagella during beat cycle of a representative cell,
with cycle averages indicated by dashed lines. (b) and (d) show
boxplots of peak values (*) and beat-average quantities (()) computed
from n = 48 flagella in 24 movies. Standard boxplot conventions
hold; the blue box indicates span of first to third quartiles, red
line indicates median, whiskers denote extent of data, and statistical
outliers, where present, are shown with red crosses.

with previous studies of Volvox somatic cells [48] and of
Chlamydomonas cells studied by a variety of methods: es-
cape from an optical trap [49] (finding 26.5 &= 10.4 pN and
31.4 £ 5.7pN in separate experiments on cells with shorter,
~8 um long flagella), measurements of the fluid flow around
swimming cells confined in thin fluid films [50] and in bulk
[51], and more recent work using micropipette force sensors
[52] (with values in the range ~15-35 pN). Calculations that
have gone beyond RFT [51,53,54] suggest peak propulsive
forces of ~20pN, in the general range of those found here
and in experiments mentioned above.

Aggregating all data obtained on the unstimulated torques
exhibited by cis and trans flagella using the ~1.5s of data
just prior to the onset of photostimulation, we find a peak
magnitude |7]* = 187 £ 48 pN um and cycle-average mean
value () = 82+ 17 pN um. As a consistency check we note
that the ratio torque/force should be an interpretable length,
and we find |77*/F* ~ 12 um, a value that is very close to
the mean flagellar length L = 13.5 um or the sum R + L/2 =
11.2 um, the average distance over which the torque acts.

Next we examine the net torques acting on unstimulated
cells, aggregating a total of 1,224 beats distributed among
24 videos of cells that displayed responses consistent with
positive phototaxis upon subsequent photostimulation. Within
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FIG. 7. Torque fluctuations in unstimulated Chlamydomonas
cells. (a) Distribution of net torques averaged over 1,224 beats of
multiple cells. Red curve is Gaussian fit to the data. Orange circles
indicate the mean values of 7~ within each of 29 contiguous in-phase
subsequences of beats (offset for clarity). (b) Mean and standard er-
ror (shaded area) of normalized autocorrelation functions of torques
calculated from the sample of aforementioned in-phase sequences of
beats.

the entire data we extract subsequences in which there are no
phase slips [41] (whose presence complicates the definition of
individual beats), and calculate within each the beat-averaged
signed sum 7~ of the torques from the two flagella,

7— = ’tis + lﬁrans' (7)

Figure 7(a) shows that the distribution of 7 conforms
very well to a Gaussian, with mean (7)) = —2.3pN um and
standard deviation o4 = 22.3 pN um. This result is comple-
mentary to earlier data [55] that showed fluctuations in the
waveforms of individual flagellar during beats. The normal-
ized autocorrelation function

_ ToT e +m) — (T )

C(m) - =
(T(m)*) — (T (n))?

®)

of these torque fluctuations, shown in Figure 7(b), decays to
negligible values within just a few beats.

Despite the near-symmetry of the torque distribution av-
eraged over all subsequences, the individual subsequences
have nonzero mean values, as shown by the orange circles in
Fig. 7(a), We conclude that our sample population includes
both cis- and trans-dominant organisms. Yet, all the cells
included show a positive phototactic response. This finding
is consistent with previous work [56,57] that examined the
location of the eyespot (facing into or out from the swimming
helix) and found that both geometries existed in populations
that display positive phototaxis and in populations that display
negative phototaxis. In Sec. IVA we examine the conse-
quences of this finding for the mechanism of phototaxis in
Chlamydomonas, and Sec. IV B we consider the implications
of torque fluctuations and the associated stochastic cell-body
“rocking” [53] on phototaxis.

A %0

¥o + ¥b

FIG. 8. The pivoting-rod model of the power stroke.

B. Heuristic model of flagellar beating

In this section we extend the quantification of flagellar
beating to a transient photoresponse like that in Fig. 4, with
the goal of inferring the angular velocity w; around & that
a freely swimming cell would experience, and which leads
to a phototurn. The constant of proportionality between the
torque and the angular velocity is an effective rotational drag
coefficient that can be viewed as one of a small number of
parameters of the overall phototaxis problem. Our immediate
goal is to develop an estimate of this constant to provide a
consistency check on the final theory in its comparison to
experiment.

A simple model [58] of the power stroke shown in Fig. 8
can be used to understand the peak values F* and 7*: a
straight flagellum attached at angle ¢, to a spherical body of
radius R, whose beat angle ¢(¢) sweeps from @y to Qg + @p.
In focusing only on the power stroke here, we take advantage
of previous work that showed that RFT overestimates the
backward displacement of a cell during the recovery stroke
due to its neglect of screening by the cell body. Table I and
Fig. 9 summarize data on these geometric quantities. Relative
to the center C a point at arclength A € [0, L] is at position

r(A, 9) = R, + At(p), )

where R, = R[sin ¢,&; + cos ¢,&,] is the vector CO and
t(¢) = sinp & + cos ¢ €, is the unit tangent. The velocity of
a point on the filament is r; (A, ¢) = —A@fi.

The integrated force of the pivoting rod in Fig. 5 is

F =1¢ LA, (10)

Considering the sinusoidal variation of the quantities in
Figs. 6(a) and 6(c), we estimate ¢ by the lowest mode that
has vanishing speed at the beginning and end of the power
stroke,

@(t) = @o + S@[1 — cos (rt /nTp)], (11)

for t € [0, nT}], where T, is the full beat period and n >~ 0.7
is the fraction of the period occupied by the power stroke.
We ignore the recovery stroke and set ¢ = ¢, for nT, <t <
Ty,. Using the data in Table I, and the fact that the maximum
projected force occurs very close to the time when ¢ = /2,
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FIG. 9. Distributions of geometric quantities for flagellar beats,
computed from n = 24 movies: (a) instantaneous flagellar beat fre-
quency ﬁ, (b) flagellar length L, (c) cell-body radius R, (d)—(f)
per-beat flagella-line initial angle @, sweep angle ¢,, and anchor
angle ¢,.

we obtain the estimate
7L fos
ney

which is ~1 SD above the experimental mean. While it is
not surprising that the pivoting-rod model overestimates the
propulsive force relative to the actual undulating flagellum,
the fact that this overestimate is small indicates that the essen-
tial physics is contained in Eq. (12).

Further heuristic insight into the flagellar forces produced
can be gained by estimating the resultant motion of the cell
body, assumed to be a sphere of radius R. This requires in-
corporating the drag of the body and that due to the flagella
themselves. A full treatment of this problem requires going
beyond RFT to account for the effect of flows due to the
moving body on the flagellar and vice versa. In the spirit of
the rod model, considerable insight can be gained in the limit
of very long flagella, where the fluid flow is just a uniform
translational velocity u(¢) and the velocity of a point on the
rod is

Fr~ ~ 22PN, (12)

(A, ¢) = —A@h + u. (13)

Symmetry dictates that the net force from the downward
sweeps of two mirror-image flagella is along €3, as is the
translational velocity u = u@, of the cell body. Adding mirror-
image copies of the force (10) and the drag force on the body
—Cug,, where ¢ = 6 uR is the Stokes drag coefficient for a
sphere of radius R, the condition that the total force vanish
yields

sin ¢ sin (vt /nTy)

u(t) =v )
® 1 +d, sin® ¢ + d) cos® ¢

(14)

where d; =2¢,L/¢ =4L/3Rc, and dj =2L/3Rc). The
prefactor speed v is given by the maximum force (12) as
2F* o fuppl?
Vv = = -,
¢ 3nciR

15)

and is independent of the viscosity w, as it arises from a
balance between the two drag-induced forces of flagellar
propulsion and drag on the spherical body. For typical param-
eters, d| ~ (.8, and the denominator in Eq. (14) is & 1.8 when
u is maximized (at ¢ = /2), while v ~ 540 um/s. Thus, the
peak swimming speed during the power stroke would be u* ~
v/1.8 ~ 300 um/s, consistent with measurements [50], which
also show that over a complete cycle, including the recovery
stroke, the mean speed & ~ u*/4. We infer that iz ~ 75 um/s,
consistent with observations [50,59].

We now use the rod model to estimate the maximum torque
T produced on an immobilized cell, to compare with the RFT
calculation from the experimental waveforms. As in Eq. (13),
the force density on the moving filament is f = ¢ A@fi, the
torque density is (R 4+ At) x f, and the integrated torque com-
ponent along &; is

T = 321oR°[£7 cos (¢ — pa) + 3£°]. (16)

where £ = L/R and ¢ is again given by Eq. (11). The two
terms in Eq. (16), scaling as RL? and L3, arise from the
distance offset from the cell body and the integration along
the flagellar length, respectively.

Examining this function numerically we find that its peak
occurs approximately midway through the power stroke,
where ¢ — ¢, >~ /3, leading to the estimate

2 f@pR? (
ney

. 1 2
T = —0+ 5153) ~250pNum, (17)

2

and for average torque,
R 2
(T) ~ =T" ~ 160 pN um. (18)
T

Here again these estimates are slightly more than 1 SD above
the experimental value, giving further evidence that the rod
model is a useful device to understand the scale of forces and
torques of beating flagella.

The essential feature of Eq. (14) is an effective translational
drag coefficient ¢ that is larger than that of the sphere due to
the very presence of the beating flagella that cause the motion.
For flagella oriented at ¢ = 7 /2, ¢ = ¢ 4+ 2¢, L, a form that
reflects the extra contribution from transverse drag on the two
flagella. We now consider the analogous rotational problem
and estimate an effective rotational drag coefficient Z, in terms
of the bare rotational drag ¢, = 87 uR® for a sphere. If we
set in rotational motion at angular speed €2 a sphere with two
flagella attached at angles %¢,, the velocity of a rod segment
at A is 2 x r and the calculation of the hydrodynamic force
and torque proceeds as before, yielding

Gy, Leos’(p =) + Loosly —¢u) + /3
&r Ccl
£ sin%(p — a
+ (p—o )_ (19)
2C||
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FIG. 10. Schematic of flagellar photoresponse. A step up in light
at t = 0 (green) leads to a biphasic decrease in the mean value and
oscillation amplitude of the cis phototorque (red), and a biphasic
increase in the magnitude of the mean value of the frans phototorque
(blue). The net torque (purple), the signed sum of the two contribu-
tions, has a biphasic response in both the oscillation amplitude and
its running mean value.

For typical parameters, ¢, ~ 2.1 pN um s, and the added drag
of the flagella is significant; the ratio in Eq. (19) varies from
4.8 to 3 as ¢ varies from @y to @o + @p. At the approximate
peak of the power stroke we find , >~ 9pN ums, a value we
use in further estimates below.

The effective rotational drag coefficient can be used to
estimate the unstimulated angular speed due to the small
torque imbalances reported in Fig. 7. If we take the standard
deviation o4 as a rough measure of the upper range of torque
imbalances that might be expected, then the associated un-
stimulated angular speed would be

oy~ <2457, (20)
which can be compared to the angular speed |w3| ~ 10s~! of
spinning around the primary axis. In Sec. IV we show that the
small ratio &, /|ws| ~ 0.25 implies that the helices are nearly
straight.

C. Adaptive dynamics

The results of the previous section constitute a quantitative
understanding of the phototactic torques produced within a
given flagellar beat, which typically lasts 20—25 ms. As men-
tioned previously, the timescale for the full photoresponse
associated with a change in light levels falling on the eyespot
is considerably longer, on the order of 0.5s. This separation
of timescales is illustrated in Fig. 10, where we have schemat-
ically shown the time-resolved, oscillating phototactic torque
of each of the two flagella, the signed sum, and its running
average. It is precisely because of the separation of timescales
between the rapid beating and both the slow response and
the slow phototurns that a theory developed in terms of the
beat-averaged torques is justified.

In the following, we measure phototorques relative to the
unstimulated state of the cell and define the two (signed) beat-

averaged quantities

A

87;:15 = (%is) - (’tis% 87zrans = (7?rans> - (Wrans)a (21)

and their sum, the net beat-averaged phototactic torque
7; = 87215 + 87:rans- (22)

Ty > 0 when the cis flagellum beats more strongly and 7, < 0
when the frans flagellum does. Our strategy is to determine
T, from experiment on pipette-held cells and to estimate the
resulting angular speed a)lf using Z,.

The scale of net torques expected during a transient pho-
toresponse can be estimated from the pivoting-rod model.
From step-up experiments such as that shown in Fig. 4, we
observe that there are two sweep angles ¢ ~"™" whose dif-
ference Ag; = max{g} — @™} can be used in Eq. (18)
to obtain 7, the maximum value of the beat-averaged sum
(corresponding to the most negative value of the purple run-
ning mean in Fig. 10). Averaging over eight step-up response
videos, we find Ag; ~ —m /14, which yields the estimate

T, ~ —34pNum. (23)

From the effective drag coefficient the corresponding peak
angular speed in such a photoresponse is

7‘*
Wi~ E_P ~ —457!, (24)

To put this in perspective, consider the photoalignment of an
alga swimming initially perpendicular to a light source. If
sustained continuously, then complete alignment would occur
in atime (7 /2)/w} ~ 0.4 s, whereas our observations suggest
a longer timescale of ~2 s. This will be shown to follow from
the variability of w; during the trajectory in accord with an
adaptive dynamics.

While the estimate in Eq. (23) gives a guide to scale of
the torques responsible for phototurns, we may calculate them
directly within RFT from flagellar beating asymmetries in the
same manner as in the unstimulated case. Figure 11 shows the
response of a single cell to a step up in illumination (of which
Fig. 4 is a snapshot), in which the results are presented both
in terms of 7, and the estimated @}. To obtain these data, the
oscillating time series of cis and trans torques were processed
to obtain beat-averaged values whose sum yields the running
average, as in Fig. 10. The overall response is <0, indicating
that the trans flagellum dominates, and the peak value aver-
aged over multiple cells of —37 &+ 12 pN um is consistent with
the estimate in Eq. (23). The biphasic response, with a rapid
increase followed by a slow return to zero, is the same form
observed in Volvox [28] and Gonium [34].

We now argue that the adaptive model (1) used for those
cases can be recast as an evolution equation for the angular
speed itself, setting p = w; and s = g, with I the light inten-
sity and g a proportionality constant,

(25a)
(25b)

f,a)lzs—h—a)l,

rahzs—h.
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FIG. 11. Dynamics of the flagellar photoresponse. (a) The mean (dark blue) and standard deviation (light-blue) of the proxy torque during
a step-up stimulus for one cell (n.., = 4) fitted to Eq. (26a) (red line). (b) Fitted (z,, t,) pairs and SEs for n.s = 4 upon step-up stimulation.
(c) As in panel (b) but for the delay time t, and time of maximum photoresponse amplitude 7*.

For constant s the system (25) has the fixed point (], h*) =
0, s).Ifw; =h=s5=0fort <0, followed by s = sy fort >
0, then

)
I—p
h(t) = so(1 — e™'/™),

w (1) = (e7/Te — o7t/ (26a)

(26b)

where p = t1,/7,. The result (26a), illustrated in Fig. 12(a)
for the case p = 0.1 and a square pulse of duration long
compared to 7,, shows clearly the biphasic response of the
data in Fig. 11. This behavior is like two coupled capacitors
charging and discharging one another, particularly in the limit
p < 1. At early times, & remains small and w; relaxes toward
so with the rapid timescale 7,. Later, when ¢ ~ 1,, h relaxes
toward s¢, and w; relaxes instead toward zero, completing the
pulse.

After a step up, & has relaxed to sy, and if s is then stepped
down to zero, w; rapidly tends toward —sp, then later reverses

(@)

(b)

12
t/Ta
FIG. 12. Dynamics of the adaptive model. (a) Response of the

variables w; (blue) and /4 (red) to a square pulse of stimulus (green),
for p = 0.1. (b) Response to rectified sinusoids.

its negative growth and returns to zero. If, as in Fig. 12,
the pulse width is much larger than t,, then the step-down
response is simply the negative of the step-up response. For
smaller step duration, the step-down response is still negative,
but is not a mirror image of the step-up dynamics. Taking sy
to be positive, this antisymmetric response implies that as the
eyespot rotates into the light there is a step-up response with
w; > 0, corresponding to transient cis flagellar dominance,
and when the eyespot rotates out of the light then w; < 0, as-
sociated with trans flagellum dominance. Conversely, taking
so to be negative corresponds to the dynamics shown in Fig. 1
that allows monotonic turning toward the light as the cell body
rotates.

Note that the adaptive dynamics coupling wy, s, and A is left
unchanged by the simultaneous change of signs w; — —wy,
h — —h, and s — —s. This symmetry allows us to address
positive and negative phototaxis in a single model, for if a
step up in light activates a transient dominant trans flagellum
response in the cell orientation of Fig. 2, with w; < 0, we need
only take s < 0.

Since the model (25) is constructed so that w; is forced by
the signal s, the opposite-sign response to step-up and step-
down signals is not an obvious feature. Yet, in the standard
manner of coupled first-order ODEs, the hidden variable 4 can
be eliminated, yielding a single, second-order equation for w;.
It can be cast in the simple form

>(1)1 = Tas s

(i =)

which is explicitly forced by the derivative of the signal, thus
driven oppositely during up and down steps.

Previous studies [27] found a measurable time delay t,
between the signal and the response that, in the language of
the adaptive model, is additive with the intrinsic offset deter-
mined by the timescales t, and 7,. This can be captured by
expressing the signal in Eq. (25) as s(t — t;). The maximum
amplitude of w;(#) then occurs at the time

d
T,— +1

d +1
Tr—
dt

7 27

T
l—p

t* =

In(1/p) + 74, (28)
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at which point the amplitude is spA(p), where

p/l=p _ H1/1=p
Ap) = F———. (29)
-p

A fit to the step-response data yields 7; = 28 &= 11 ms and
t* = 97 £ 18 ms. This delay between stimulus and maximum
response has a geometric interpretation. The angle through
which the eyespot rotates in the time t* is |ws|t* = (0.28
0.05)7, which is very nearly the angular shift k = 7 /4 of the
eyespot location from the (&,-€&;) flagellar beat plane (Fig. 1).
Since w3 < 0, the eyespot leads the flagellar plane and thus ¢*
is the time needed for the beat plane to align with the light.
In this configuration, rotations around €; are most effective
[17,27].

Since the function A(p) decreases monotonically from
unity at p = 0, we identify the maximum angular speed w}
attainable for a given stimulus as sy. With sy = gl, we can
remove g from the problem by instead viewing ] as the
fundamental parameter, setting

s(t) = wi (). (30)

As indicated in Eq. (30), there is surely a dependence of w]
on the light intensity, not least because the rotational speed
will have a clear upper bound associated with the limit in
which the subdominant flagellum ceases beating completely
during the transient photoresponse. As discussed elsewhere
[27,60], there is evidence in Chlamydomonas and a number
of other organisms for a response that depends logarithmi-
cally on light intensity, allowing for “fold-change” detection
like that known for chemotaxis [61]. In previous work on
Chlamydomonas [27], the phototactic response was probed
using green light, which is known to elicit a weaker response
than the blue light used here. In what follows, for simplicity,
we focus on the simplest situation described by a fixed w*.
Turning now to the oscillating light signals experienced by
freely rotating cells, the directionality of the eyespot implies
that the signal will be a half-wave rectified sinusoid (HWRS).
Figure 12(b) shows the response of w; to two single half-
period signals of this type. Compared to the square pulses
of equal duration and maximum [Fig. 12(a)] the maximum
response amplitude is reduced due to the lower mean value
and slower rise of the signal. The frequency response of the
adaptive model is most easily deduced from Eq. (27), and if
s(t) = 3¢, then there will be a proportionate amplitude @;.
We define the response Z(w) = @,/5, gain G(w) = |Z ()|
and phase shift x (w) = tan~'[Im(%)/Re(Z%)]. These are

o

Glw) = ,
s ey ey

(31a)

1 — pa?

m) G1b)

X =7+ xo— 6, Xo:tan"(
where o = wt,, § = wty; and the additive term of 7 in the
phase represents the sign of the overall response. Figures 13(a)
and 13(b) show these quantities as a function of the stimulus
frequency w for various values of p. The peak frequency is at
a* =1/,/p, or " = 1/,/7,74, at which G(w*) = 1/(1 + p)
and x = m — w*t,. Figure 13(a) shows that the peak is sharp
for large p and becomes much broader as p — 0. The peak
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FIG. 13. Dynamics of the adaptive model. (a) Gain (31a) for
various values of p = 7,/7,. (b) As in panel (a), but for the phase
shift x (31b), with t; = 0. (b) Comparison of peak amplitude for
step-up and oscillatory forcing as a function of p.

amplitude decays in a manner similar to Eq. (29) for a step
response [Fig. 13(c)].

The peaked response function amplitude (31a) and phase
shift (31b) are qualitatively similar to those obtained exper-
imentally by Josef er al. [27], who analyzed separately the
cis and trans responses and found distinct peak frequencies
for the two, and investigated the applicability of more com-
plex frequency-dependent response functions than those in
Eq. (31). In the spirit of the analysis presented here we do not
pursue such detailed descriptions of the flagellar responses,
but it would be straightforward to incorporate them as we
discuss in Sec. IV C.

Using the same protocol as for the step function response in
Fig. 11, we measured the frequency dependent photoresponse
by subjecting cells to an oscillating light intensity at five
distinct frequencies, analyzing the transient waveforms using
RFT and determining the beat-average torque magnitude. The
results of this study (Fig. 14), were fit to the form (31a), from
which we obtained the time constants 7, = 0.009 & 0.002 s
and t, = 0.52 £ 0.10s (SE), and thus p = 0.02. This strong
separation between response and adaptation time scales is
consistent with that seen under the step response [Figs. 11(a)
and 11(b)] and leads to the broad peak of the frequency
response curve. The peak frequency (~2 Hz) is in very
close agreement with recent direct measurements of rotation
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FIG. 14. Frequency response of immobilized cells. (a) Measured beat-average phototactic torque determined from RFT (for positive
phototaxis) at five stimulus frequencies (0.5, 1, 2, 4, and 8 Hz) for n.ys = 3 (blue) fitted to Eq. (31a) (red line). (b) As in panel (a), but
for the phase x of the response, fitted to Eq. (31b). The photoresponse shown (in blue) for three different stimulus frequencies (in green):

(c) 1 Hz, (d) 2 Hz, and (e) 4 Hz.

frequency about the cell-body axis on free-swimming cells
[18], and the overall response function is consistent with the
earlier PRC study by Yoshimura and Kamiya [25]. The phase
data shown in Fig. 14(b) are well-described by the adapt-
ive model with the parameters determined from the fit to the
amplitude, with a time delay of 7, = 38 & 5 ms (SE), a value
that is consistent with that obtained from the step response.
For frequencies w near w* and for p <« 1, the phase has the
form

X >m =2t (w— ") — o'ty +--- . (32)

This result shows that while negative detuning from »* by
itself increases the phase above m, the time delay can be a
more significant contribution, leading to x < m. Such is in-
deed the case in Fig. 14, where the peak frequency is >~ 2 Hz,
but |ws|t; =~ 0.137 and x(w*) < 7.

IV. DYNAMICS OF PHOTOTACTIC TURNS

A. Helices, flagellar dominance and eyespot shading

We now consider the larger length scales associated with
the swimming trajectory of cells and note the convention that
rotation around an axis &; is taken to have a positive angular
velocity w; if the rotation is clockwise when viewed along
the direction that &; points. Chlamydomonas spins about &3
with an angular velocity ws; < 0, and we define the positive
frequency f, = —ws/2m. Its helical trajectories arise from an
additional angular velocity @€, and we assume that w, ws,
and the translational speed u along €; are sufficient to define
the trajectories, without invoking an angular velocity w;.

The natural description of swimming trajectories is through
the Euler angles (¢, 0, ¥) that define its orientation. In the
standard convention [62], their time evolution is given by
angular velocities (w1, w,, w3) as follows,

w1 = ¢sinb siny + 0 cos ¥, (33a)
w, = ¢sinb cos Y — O sinyr, (33b)
w3 = (ﬁcosé + w (33¢)

The transformation from the body frame x to the laboratory
frame x’ is X' = A - x and the reverse transformation is via

x = A -x,where A = A~! = A7, with

crcp —cOspsyr —syrcep —clspcy s s¢
A=|cysp+chcosy —sysp+chcpcy —sbco |,
s6 sy sO cyr ct
(34)

and we have adopted the shorthand ¢y = cos ¥, etc.

The connection between helical swimming trajectories and
the angular velocities w; has been made by Crenshaw [63—65]
by first postulating helical motion and then finding consistent
angular velocities. We use a more direct approach, starting
from the Euler angle dynamics (33). If there is motion along
a helix, and @; and w3 are nonzero and constant, then apart
from the degenerate case of orientation purely along €., where
“giml_)al locking” occurs, we must have ¢ = constant, 0 = 0,
and ¥ = 0. If we thus set ¢ = —y (the sign choice taken for
later convenience), 6 = 6y (with —7 /2 < 6y < 7 /2), then a
solution requires ¥ = 7 /2 and the primary body axis is

€; = —sinGp[sin yt &, + cos yt &,] 4 cos b &;. (35)

If the organism swims along the positive €3 direction at speed
u, then &3 is the tangent vector t to its trajectory and we can
integrate (35) using t = (1/u)r, to obtain

u sin 6

r(t) =

[cosyt &, —sinytr @]+ utcosépe,, (36)

which is a helix of radius R;, and pitch P, given by
u|sin 6| _ 2mucos by
71 Iyl

With the parameters (y, 6p) taking either positive or neg-
ative values, there are four sign choices: (+, +), (4, —),
(—, +), and (—, —). Since the z coordinate in the helices (36)
increases independent of those signs, we see that when y > 0
the x-y components of the helices are traversed in a clockwise
(CW) manner and the helices are left-handed (LH), while
when y < 0 the in-plane motion is CCW, and the helices are
right-handed.

Next we describe in detail the helical trajectories adopted
by cells in steady-state swimming, either toward the light

) = (37)

’
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during positive phototaxis, or away from it during negative
phototaxis. For such motions, the relevant angular rotations
are w3 and the intrinsic speed @;. As noted earlier [17], there
are four possible configurations to be considered on the basis
of the sense of rotation around &; as determined by cis dom-
inance (@; > 0) or trans dominance (®; < 0). In both cases
the relationship between the helix parameters y and 6 is

A

@1 = —y sin Gy, (38a)

w3 = —y cos b, (38b)

with w3 < 0 in both cases. In trans dominance, @; < 0 and
a solution of Eq. (38) has 0 < 6y < 7 /2, whereas for cis
dominance, @; > 0 and — /2 < 6y < 0. Thus,

fo=tan" (@ fan), v =\ +ed  (39)

Setting 7 = yt, we obtain the helical trajectories

s Con . Bl
r(t) = *Ry[cosfé, —sinf&,] + Ziez, (40a)
’ e
€ = costp[sin7 &, + cos7&,] £ [sinby|&, (40b)
& = —cosfé, +sin7é,, (40¢)

for trans (+) and cis (—) dominance.

We are now in a position to describe quantitatively the
helical trajectories of swimming Chlamydomonas in the ab-
sence of photostimulation. From the estimated angular speed
&, ~ 2s7! in Eq. (20), the typical value |w3| ~ 10s~! and
swimming speed u ~ 100 um/s, we find R, ~ 2 um and P, ~
60 um, both of which agree well with the classic study of
swimming trajectories (Fig. 6 of Ref. [16]), which show the
helical radius is a fraction of the body diameter and the pitch
is ~6 diameters.

Next we express quantitatively some features regarding
the eyespot orientation with respect to the helical trajectory
that have been remarked on qualitatively [17]. While there is
some variability in the eyespot location, it is typically in the
equatorial plane defined by &; and &,, approximately midway
between the two. We take it to lie at an angle « € [0, 7 /2] with
respect to &, such that the outward normal 6 to the eyespot is

0 = sink & + cosk &,. 41)

The outward normal vectors to the helix cylinder are i =
+(cos7 &, —sin7é,), so the projection of the eyespot normal
on fi have the time-independent values

trans dominance,
cis dominance.

(42)

P —cosk < 0;
) +cosk > 0;

Thus, for any « € [0, /2], the eyespot points to the inside
(outside) of the helix for trans (cis) dominance. This confirms
the general rule that any given body-fixed spot on a rigid body
executing helical motion due to constant rotations about its
axes has a time-independent orientation with respect to the
helix. When «k = 0, 6 = &, which points to the cis flagellum,
and we see that the dominant flagellum is always on the
outside of the helix.

If light shines along some direction £, its projection on
the eyespot is —Z - &; for light shining down the helical axis,

TABLE II. Left-handed helical swimming of Chlamydomonas.

Dominant Swimming relative Eyespot Eyespot
flagellum o) to light source orientation status
cis + toward outside shade
cis + away outside light
trans - toward inside light
trans - away inside shade
1= —&_, then the projections in the two cases are
A +sink sinfy > 0, trans dominance,
—£-0= . . , . (43)
—sink |sinfy| < 0, cis dominance.

These results have implications for the degree of illumination
of the eyespot under four possible steady-state scenarios in-
volving which of the flagella is dominant and whether cells
swim toward or away from the light, as summarized in Table II
and shown in Fig. 15 for the example of a cis-dominant cell
swimming toward the light.

Schaller et al. [17] argued that the results summarized
in Table II imply a one-to-one correspondence between the
phototaxis sign and the sense of flagellar dominance; they
hypothesize that stable swimming of cells in either positive
or negative phototaxis should involve the absence of a light

FIG. 15. Helical trajectory of a cis-dominant cell which is swim-
ming in a direction aligned with the light source located at the
bottom. Principal body rotation axes are depicted as cyan, magenta
and black arrows for &, €, and &; axes, respectively. Eyespot is
always located in the shading hemisphere of the cell body and is
pointing outwards from the helix, as is the cis flagellum (not shown).
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signal on the eyespot, rather than constancy of the signal at
some minimum value, which would have to be interpreted
by the cell in a presumably imprecise manner. Absence of a
signal requires the eyespot to be shaded, in turn implying that
only cis-dominant cells would display positive phototaxis and
only trans-dominant cells would be negatively phototactic.

Later experimental work [56,57] showed that this strict
duality is not the case, with each sense of phototaxis displayed
by cells with eyespots pointing either inward or outward from
the swimming helix. It was further noted that the statistical
distribution of eyespot orientation varied randomly and sig-
nificantly from culture to culture. Although our studies of
flagellar torques (Fig. 7) were carried out on immobilized,
unstimulated, dark-adapted cells, rather than those executing
phototaxis, our conclusion that there is a statistical distribution
of flagellar dominance is consistent with these earlier results.
We deduce that it must be possible for cells to reach a “sta-
ble” helical swimming trajectory with the helix axis oriented
toward the light and the eyespot either shaded or illuminated.
While this may present conceptual problems, if the underlying
biochemical network must interpret the absolute value of the
light, it is a natural result of the adaptive dynamics (25),
which has a fixed point with @; = 0 for any constant value of
the signal. Below we show by direct numerical and analytic
studies that phototaxis can indeed be achieved with either
flagellum dominant in the unstimulated case.

B. Torque fluctuations and eyespot orientation

The analysis above of eyespot orientation during helical
swimming is purely deterministic, as it is based on the pre-
sumed constancy in time of the unstimulated angular speeds
@; and ws. Yet, as we saw in Sec. III A and as discussed
earlier [41,55], there are significant fluctuations in &;. In this
section we explore the consequences of those fluctuations.

At the most basic level, torque fluctuations will increase
rotational diffusion. While the thermal rotational diffusion
constant of a sphere of the radius of a Chlamydomonas cell
would be D" = kpT /87 uR® ~ 0.002 s~ !, experimental mea-
surements [66] suggest the much larger value D, ~ 0.4s~!.
This large value can be understood in part due to the contri-
bution of transient periods of asynchronous beating (known
as “slips” in the language of coupled oscillators [41]) which
lead to cell-body “rocking” [53], but the torque fluctuations
quantified in Fig. 7 will also play a role. In the usual manner,
if we neglect any bias in the fluctuations, then a Langevin
equation for the evolution of a tilt angle ¢, around &; (Fig. 16)
would have the form £,8; = 7 (¢), from which we deduce

D, ~ (7:2—” (44)
¢}

in terms of the variance of the distribution and the decay time
7 of the autocorrelation function of torque fluctuations. Using
the measured variance (772) = 497 (pN um)?, the estimated
effective rotational drag coefficient Z, ~ 9 pN umss, and a de-
cay time of T ~ 0.025-0.05 s (i.e., 1-2 beat periods), we find
D, ~0.15-0.3s7!, close to the experimental value.

The importance of rotational diffusion can be seen by
examining the root-mean-square angular deviation over the
course of one half-rotation of the cell body around &3 (equiva-

FIG. 16. Illustration of the effect of torque fluctuations on eye-
spot orientation. A fluctuating torque imbalance between the two
flagella induces transient rotations about €, tilting the €; axis to new
directions &; or &, depending on the sign of the tilt angle 6,. The
eyespot, oriented as shown by the dark orange oval, then points up or

down (lighter orange ovals).

lently, over a half wavelength of the helical trajectory). In this
time, we have (92) ~ D, /f, ~ 0.15, so (63)'/? ~ 0.4 ~ 23°.
This can be compared to the angular size of the eyespot itself,
as illustrated in Fig. 16. Electron microscopy [6] of cross-
sections through the Chlamydomonas eyespot shows that the
diameter d of the domain of pigmented globules is ~2 um, so
the half angle ¥ subtended by the eyespot at the surface of the
cell body of radius R ~ 5um is © = tan~!(d/2R) ~ 0.23 ~
13°. Thus, the fluctuations in a half-turn are comparable in
size both to the eyespot itself and to the upper end of the
expected tilt 6y due to helical swimming. We conclude that
the fluctuating tilt is sufficient to bring the eyespot at least
partially in and out of the shade during swimming toward
the light. This result suggests another reason why the strict
connection between unstimulated flagellar dominance and the
sign of phototaxis is not correct. Our results suggest however
that these fluctuations occur at frequencies that lie near or
above the beat frequency, a range generally beyond the peak
frequency of the gain function (31a), and they will most likely
be filtered out by the adaptive response system.

C. Phototactic steering with adaptive dynamics

Now we merge the adaptive photoresponse dynamics with
the kinematics of rigid body motion. The dynamics for the
evolution of the Euler angles in the limit w, = 0 is obtained
from Eq. (33), yielding

. sin
o =w——r, (45a)
sin 6
0 = w cos ¥, (45b)
. i 0
Y =w; — o SRV eos? 1// cos (45¢)
sin 6

Given the assumption w, = 0, these are exact. As we
take w3 to be a constant associated with a given species of
Chlamydomonas, it remains only to incorporate the dynamics
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of w; and the forward swimming speed to have a complete
description of trajectories. The angular speed w; is the sum of
intrinsic and phototactic contributions,

) = &) + of, (46)

where ! is described by the adaptive model.

It is natural to adopt rescalings based on the fundamental
“clock” provided by the spinning of Chlamydomonas about
€3. Recalling that w3 < 0, these are

A C?)l C()]l’
T =lwslt, P=-—, =—, o=|wst,
|3 |s]
h K
B =lwslt,, H=—, =—. 47
|| |ws]

To incorporate the photoresponse, the light signal at the
eyespot must be expressed in terms of the Euler angles.
Henceforth we specialize to the case in which the a light
source shines in the x-y plane along the negative x axis, so l=
—&,, and the normalized projected light intensity J = —£ - 6
on the eyespot can be written as

J =sin (k — ) cos¢ — cos (k — ) cos O sin ¢. (48)

We assume for simplicity that eyespot shading is perfect, so
that the signal sensed by the eyespot is

S =PJHU), (49)

where P* = wj/|ws] is negative (positive) for positive (nega-
tive) phototaxis, and H is the Heaviside function.
With these rescalings, the dynamics reduces to

R sin ¥
¢or =P+ P)—-, (502)

sin 6
Or = (P + P)cos v, (50b)

N sin Y cos 6
Yr=—1— P+ pIYSC 500
sin @

BPr=S—H—P, (50d)
aHr =S —H. (50e)

These five ODEs, along with the signal definition in Eqgs. (48)
and (49), constitute a closed system. To obtain the trajectory,
we define a scaled position vector R = r/R, so that the dy-
namics r; = u€z; becomes

Ry = U{sinf[sin¢ &, — cos ¢ &,] + cos O &}, oy

where U = u/(R|ws3|) is the scaled swimming speed. For
typical parameter values (u = 100 um/s, R ~ 5um, and f, =
1.6Hz), we find U ~ 2. Given (6(T), ¢(T)), we integrate
(51) forward from some origin R(0) to obtain R(7"), and use
the triplet (6(T"), ¢(T), ¥ (T)) and the matrix A, the inverse
of A in Eq. (34), to obtain &;(7") and & (7).

An important structural feature of the dynamics is its
partitioning into sub-dynamics for the Euler angles and the
flagellar response. The connection between the two is pro-
vided by the response variable P(T"), via the signal S, such that
any other model for the response (for example, one incorpo-
rating distinct dynamics for the cis and trans flagella), or the
signal (including only partial eyespot directionality, or cell-
body lensing) can be substituted for the adaptive dynamics
with perfect shading.

The model (50) has four main parameters: P determines the
unstimulated swimming helix, P* sets the maximum photore-
sponse turn rate, and « and 8 describe the adaptive dynamics.
Additional parameters are the eyespot angle « (41) and time
delay t,. To gain insight, we first adopt the simplification that
the eyespot vector 0 is along &, (x = 0), set 7; = 0, and solve
the initial value problem in which a cell starts swimming in the
x-y plane (6(0) = 7 /2) along the direction —&, (¢(0) =0)
with its eyespot orthogonal to the light (¥ (0) = 0; &, = &, and
€, = €,) and about to rotate into the light. Figure 17 shows the
results of numerical solution of the model for the nonhelical
case P = 0, with P* = —0.4 for positive phototaxis, o = 7,
B = 0.14 (corresponding to T = 0.67 s and 7, = 0.013 s, con-
sistent with experiment) and U = 2. We see in Fig. 17(a) how
the initially large photoresponse when the cell is orthogonal
to the light decreases with each subsequent half-turn as the
angle ¢ evolves toward /2 [Fig. 17(b)]. The signal at the
eyespot [Fig. 17(c)], is a half-wave rectified sinusoid with an
exponentially decreasing amplitude. For this nonhelical case
the Euler angle 6 remains very close to 7 /2 during the entire
phototurn, indicating that the swimmer remains nearly in the
x-y plane throughout the trajectory [Fig. 17(d)].

If the initial condition is nearly opposite to the light, the
cell can execute a complete phototurn [Figs. 17(e)-17(h)].
The very small but finite illumination of the eyespot at the
beginning of the turn is sufficient to produce the nearly 7 turn
to reach the light. The special case of swimming precisely
opposite to the light direction is a fixed point of the dynam-
ics, but it is linearly unstable to perturbations such as torque
fluctuations.

Next we include helicity in the base trajectory, setting
P = 0.3. In the absence of phototactic stimulation this value
leads to helical motion with a ratio of helix radius to pitch
of R,/P, = P/2m ~ 1/20, a value considerably larger than to
that seen experimentally [16], but useful for the purposes of
illustration. The phototurn dynamics shown in Fig. 18 exhibits
the same qualitative features seen without helicity, albeit with
much more pronounced oscillations in the evolution of the Eu-
ler angles, particularly of ¢ and 6. Averaged over the helical
path the overall trajectory is similar to that without helicity,
and does not deviate significantly from the x-y plane.

Recalling the results in Eq. (43) for the projection of the
eyespot normal on the light direction during aligned helical
swimming, we see that the case x = 0 is special in that the
projection vanishes for any helix tilt angle 6y,. Choosing in-
stead the physical value x = 7 /4 we can study the role of
eyespot shading in phototaxis via helical trajectories. We con-
sider a simple phototurn from ¢ = 0 to ¢ = 7 /2 for systems
with P = £0.3, corresponding to unstimulated cis- (4) and
trans (—) dominance. Both are found to turn toward the light,
displaying much the same behavior seen already in Figs. 17
and 18. But there are important differences that are best seen
by comparing the dynamics of the adaptive system in the two
cases.

As shown in Figs. 19(a) and 19(b), when the cis-dominant
cell turns to the light it ends up oriented at a slight angle to
the light direction such that the light projection J oscillates
around a negative mean, with maxima that just reach zero
from below. At the same time, the photoresponse and hidden
variables both relax to zero as there is no light signal. Thus, the
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010 20 30 40 50 60
T

FIG. 17. Positive phototaxis from model for nonhelical swimming. (a)—(c) Time evolution of adaptive variables, Euler angles, and eyespot
signal during a phototurn, i.e., from swimming orthogonal to the light to moving directly toward it. (d) Trajectory of the turn showing initial
(S) and final (T) orientations of the cell (also in magnified insets). (e)—(h) Analogous to panels above but with dynamics starting from an

orientation facing nearly away from the light. Parameters are P = 0, P*

=—-04,0=7,8=0.14, and U = 2, with the eyespot along &, (i.e.,

k = 0 but shown in canonical position), and 7, = 0. Color scheme of cell’s principal axes is same as in Fig. 15.

cell has adopted an orientation that is tilted toward the light by
the precise angle that keeps the eyespot shaded, but the helical
axis is not precisely aligned with the light, as can be seen by
the fact that the (negative) projection J oscillates in time rather
than settling to a constant as it would for perfect alignment.
While consistent with the hypothesis of Schaller et al., this
result shows the subtle point that for helical trajectories there
is an “uncertainty cone” around the light direction, within
which any angular offset is consistent with eyespot shading.

In contrast, when the trans flagellum dominates, perfect
alignment with the light is achieved while the eyespot is
illuminated, as can be seen in Figs. 19(c) and 19(d); the
light projection J settles to a positive constant value that is
matched by the hidden variable H, and P asymptotes to zero
as alignment is achieved. This completes the demonstration
anticipated at the end of Sec. IV A.

To make analytical progress in quantifying a phototurn,
we use the simplifications that are seen in Fig. 17 for the
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FIG. 18. Positive phototaxis with helical swimming. As in Fig. 17 but with 2 = 0.3.

nonhelical case. First, we neglect small out-of-plane motion
and set 6 = /2. Second, we note that the time evolution of
¥ is dominated by rotations around &3, and thus we assume
Y = —T. This yields a simplified model in which the remain-

@]

0 10 20 30 40 50 60
T

FIG. 19. Eyespot shading during phototurns with underlying cis

and trans dominance. Evolution of (a) the adaptive photoresponse

variables P and H and light projection (b) during positive phototaxis

with unstimulated cis dominance, with P = 0.3 and eyespot angle

k = 1 /4. (c), (d) As in panels (a) and (b), but for trans dominance,
with P = —0.3.

ing Euler angle ¢ is driven by the cell spinning, subject to the
adaptive dynamics,

¢r = —PsinT, (52a)
BPr =S —H—P, (52b)
aHy =S — H, (52¢)

where we allow for a general eyespot location, using J =
cos ¢ sin(T + «), and thus

S = P*cos¢sin (T + k) H[sin (T + «)]. (53)

As it takes a number of half-periods of body rotation to ex-
ecute a turn, we can consider the angle ¢ to be approximately
constant during each half-turn n (n = 1, 2, ...) at the value
we label ¢,,. For any fixed ¢,, the signal § is simply a HWRS
of amplitude P* cos ¢,,. We explore two approaches to finding
the evolution of ¢,: (i) a quasi-equilibrium one in which the
steady-state response of the adaptive system to an oscillating
signal is used to estimate P, and (ii) a nonequilibrium one in
which the response is the solution to an initial value problem.

In the first approximation, we decompose the HWRS eye-
spot signal (53) into a Fourier series,

1 1
S:P*cos¢n{—+—sin(T—|—/c)
T 2

_ E Z cos[2n(T + «)] (54)
T A= (2n)? — 1

From the linearity of the adaptive model it follows that each

term in this series produces an independent response with

magnitude G and phase shift x appropriate to its frequency

nws, forn =0, 1,2, .... Since the magnitude G in Eq. (31a)

vanishes at zero frequency, the contributing terms in the
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TABLE III. Timescales that define the reorientation dynamics.
Experimental data are from the present study except for the cell body
rotation frequency.

Quantity Symbol Mean + SD
Adaptation time Ta 0.764 £ 0.190s
Response time T 0.018 £ 0.009s
Time delay T 0.028 £+ 0.011s
Cell body rotation frequency [18] fr 1.67 + 0.35Hz
Reorientation timescale Tx 0.96 &+ 0.36s

photoresponse are

1
P = P*cos¢, EG(w3)sin [T+« + x(@3)]

2 Z G(2nw3)

e )2 os [2n(T + «) + X(2na)3)]}.

(55)

The first term dominates, as it is at the same frequency as
the right-hand side of the equation of motion ¢y = —PsinT.
Keeping only this term, we integrate

or ~ —%P*G(ag) cos ¢, sin T sin(T + k + x) (56)
over one half-period (T = ) and obtain the iterated map

¢n+1 = ¢n + SJ_ COos ¢n» (57)

where
£ = _%P*G(m)cos [k + x(w3)], (58)

with & > 0 for P* < 0 in positive phototaxis and & < O for
negative phototaxis. An alternative approach involves the
direct integration of the equations of motion over each half-
turn. The lengthy algebra for this is given in Appendix A,
where one finds a map analogous to Eq. (57), but with an
n-dependent factor &, that converges for large n to that in
Eq. (58). Supplemental Video 2 [44] illustrates the cell reori-
entation dynamics under this map.

The iterated map (57) has fixed points at ¢ = £ /2.
Linearizing about those values by setting ¢, = £ /2 + §¢,,
we obtain 8¢, = (1 F £)8¢, and thus §¢, o (1 F &£)"'5¢.
Hence: (i) the angle 4+ /2 is stable for positive phototaxis
when 0 < & < 2 and becomes unstable for & > 2, while it is
unstable for negative phototaxis (§ < 0); (ii) the angle —m /2
is unstable for positive phototaxis for any & > 0, while it is
stable for negative phototaxis in the range —2 < & < 0 and
unstable for £ < —2. Thus, positively phototactic cells orient
toward +7 /2 and negatively phototactic cells orient toward
—m /2, except for values of |£| > 2. These exceptional cases
correspond to peak angular speeds w} > 4|ws|/3 ~ 13571

Figure 20(a) shows the iterated map (57) for both positive
and negative phototaxis. In the usual manner of interpreting
such maps, the “cobwebbing” of successive iterations shows
clearly how the orientation + /2 is the global attractor for
positive phototaxis, and ¢ = —m /2 is that for negative photo-
taxis. When |£| is small, the approach to the stable fixed point

¢n+1

p=10.01 |

0.1 1 10
JrTa

FIG. 20. Iterated map of the reorientation model. (a) Cobweb-
bing of iterations starting from ¢ near —m /2 for positive phototaxis
(upper branch in yellow) and near 4 /2 for negative phototaxis
(lower branch in purple), as indicated by triangles, for light shining
toward —&,. Values of & = 30.29 are used which are calculated
based on Eq. (58) using values from Table III. (b) Response factor
1/0 in Eq. (59) for number of half-turns needed for alignment as a
function of tuning parameter, for various values of p as indicated.

is exponential, §¢ ~ exp(—n/N), where N = Ny/Q(w3), with

4
O(w3) = G(wz)cos(k +x0 —8), No=—7—, (59)
T | P*|

is the characteristic number of half-turns needed for align-
ment. The number N, reflects the bare scaling with the
maximum rotation rate around &;. For the typical value P* ~
0.1 we have Ny ~ 6. The presence of the gain G in denomi-
nator in Eq. (5§9) embodies the effect of tuning between the
adaptation timescale and the rotation rate around €3, while
the term cos(k + xo — 8) captures the feature discussed in
frequency response studies in Sec. IIIC, namely that the
flagellar asymmetries have maximum effect (and thus Q is
maximized) when the negative phase shift o — § offsets the
eyespot location). Figure 20(b) shows the dependence of N/Ny
on the scaled relaxation time f, 7, for various values of p. For
the experimentally observed range p ~ 0.02 — 0.1 there is a
wide minimum of N/Ny around f,t, ~ 1. This relationship
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confirms the role of tuning in the dynamics of phototaxis, but
also shows the robustness of the processes involved.

Returning to the evolution equation (56) for ¢, we can
also average the term sin 7 sin(T + k + x ) over one complete
cycle to obtain the approximate evolution equation

¢r = 31P*|Q(w3) cos ¢. (60)

For positive phototaxis and with ¢(0) = 0, the solution to this
ODE can be expressed in unrescaled units as

®(t) = 2tan” ! (¢'/™), (61)
where ® = /2 4+ ¢, with &(0) = /2, (00) = 7, and the

characteristic time in physical units is
4 4%, /1Ty
l0}1Q(w3)  G(ws)cos (k + xo — 8)

Ty (62)
This is a central result of our analysis, in that it relates the
timescale for reorientation during a phototurn to the mag-
nitude and dynamics of the transient flagellar asymmetries
during the photoresponse. As discussed above, the function
O(ws3) embodies the optimality of the response—in terms of
the tuning between the rotational frequency and the adaptation
time, and the phase delay and eyespot position—but also
captures the robustness of the response through the broad
minimum in Q as a function of both frequency and eyespot
position. The result in Eq. (62) is of the same form as that
found in previous work on the adaptive chemotactic response
of sperm cells [30].

Using the 3D tracking system described in Sec. II, we
analyzed six pairs of movies, within which we tracked 283
trajectories with duration greater than 10s and which in-
cluded the trigger frame. From those, 44 showed both positive
phototaxis and included a full turn to ¢ = /2 as shown in
Fig. 21(a) and Supplemental Video 3 [44]. These trajectories
were cropped to include any points for which —m7 /2 < ¢ <
7 /2 and which could then be fitted to Eq. (61) to determine
the experimental time constant t,. The boxplot in Fig. 21(c)
shows the experimental mean value 7, = 0.96 £ 0.36s (also
in Table III). This can be compared to the estimates obtained
within the steady-state approximation (62) and the transient
analysis (Appendices A and B), both of which are based on
the mean and SE value of the peak flagellar phototorque of
—35.0 £ 8.8 pN um, the mean values of the adaptive flag-
ellar response timescales (t, = 0.018s and 7, = 0.764 s in
Table IIT) and the effective rotational drag coefficient Z,.
The steady-state estimate of 7, is 1.04 & 0.26 s (with Q/4 =
0.243), while the transient estimate is 0.96 &= 0.24 s [with
the nonequilibrium counterpart Q@ = 0.265 in Eq. (B5)]. This
agreement provides strong validation of the model of adaptive
phototaxis developed here.

V. DISCUSSION

This study has achieved four goals: the development of
methods to capture flagellar photoresponses at high spa-
tiotemporal resolution, the estimate of torques generated
during these responses, the measurement of relevant biochem-
ical timescales that underlie phototaxis, and the integration
of this information into a mathematical model to describe

100
g
2 50
[\W)
0
200 p
/N
0
100 ~ 5
0
X m
(k) y (pm)

FIG. 21. Phototactic swimmers tracked in three dimensions.
(a) A U-turn: trajectory in black is prior to light stimulation, that
in green is afterwords. Blue arrows indicate direction of light. The
cropped trajectory used for fitting the reorientation dynamics is
bounded by the points S and T. (b) Dynamics of the reorientation
angle @ (blue) for the cropped trajectory fitted using Eq. (61).
(c) Box plot of the distribution of fitted t,, along with steady-state
(green) and nonequilibrium (purple) estimates and SEs derived from
micropipette experiments.

accurately the phototactic turning of Chlamydomonas. In de-
veloping a theory for phototurns, our work also puts on a
more systematic mathematical foundation qualitative argu-
ments [17] for the stability of phototactic trajectories based on
eyespot orientation in both positive and negative phototaxis.

We have emphasized that rather than seek to develop a
maximally detailed model of the dynamics of individual flag-
ellar responses involved in phototaxis, we aimed to provide,
in the context of one simple microscopic model, a multi-
scale analysis of the connection between such responses and
the phototactic trajectories in a manner than can be eas-
ily generalized. Thus we obtain from experiment the values
for microscopic and macroscopic timescales, as shown in
Table III, and derive relations between them, culminating in
Eq. (62) [and Eq. (BS)].

This analysis highlights the dual issues of optimatility
and robustness. As noted in the introduction, the former
was first addressed using a paralyzed-flagella mutant strain
(pfl14) and an electrophysiological approach on a bulk
sample by [25]. In those experiments, a suspension of im-
motile cells was exposed to an oscillating light stimulus
(wavelength 500 nm) and the resulting photoreceptor current
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was measured in a cuvette attached to two platinum elec-
trodes. The experiment using relatively high light intensities
ed a frequency response peak of 1.6 Hz when stimulated with
~160uE s~ ' m~2 and a frequency response peak of 3.1 Hz
when stimulated with ~40 uE s~! m~2. The former observa-
tion is in very good agreement with our results in Fig. 14
(peak response at >~ 2 Hz), even though we used light stimulus
intensities of ~ 1 uE s~' m~2. We have not seen any evidence
of cells having flagellar photoresponse dynamics that would
corroborate the latter result of 3.1 Hz and this is a matter open
to further study.

In addition, this study has addressed issues relating to
past observations. With respect to the lag time t; of the
photoresponse, we have measured by detailed study of the
flagellar waveforms a value of 28 4+ 11 ms (Table III) that
is very similar to the value 30-40 ms observed earlier [21].
In addition, we have shown through the adaptive dynamics
that the peak flagellar response is at a larger total delay time
t* given by Eq. (28) that corresponds accurately to the time
between the eyespot receiving a light signal and the alignment
of the flagellar beat plane with the light. Analysis of the
phototactic model reveals that such tuning shortens the time
for phototactic alignment.

Regarding the amount of light necessary for a flagellar
photoresponse appropriate to positive phototaxis, we have
converged to ~1uEs~'m™2 at a wavelength of 470nm.
While this value is much lower than in other photoresponse
experiments [26] where ~60uEs™' m~2 were used at a
longer wavelength (543 nm), it is consistent with the sensitiv-
ity profile of channelrhodopsin-2 [67]. More detailed studies
of the wavelength sensitivity of the flagellar photoresponse
should be carried out to reveal any possible wavelength de-
pendencies of quantities such as the time constants 7, and t,.
Our work has addressed the relationship between the stimulus
and the photoresponse of Chlamydomonas using an adaptive
model that has perhaps the minimum number of parameters
appropriate to the problem, each corresponding to a physi-
cal process. Attempts to derive similar relationships between
stimulus and photoresponse [27] used linear systems analysis.
The result of such a signal-processing oriented method usually
includes a much larger number of parameters necessary for the
description of the system, without necessarily corresponding
to any obvious measurable physical quantities.

The evolutionary perspective that we emphasized in the
introduction, culminating in the results presented in Fig. 2,
points to several areas for future work. Chief among them is an
understanding of the biochemical origin of the response and
adaptive timescales of the photoresponse, in light of genomic
information available on the various species. Flagellar and
phototaxis mutants will likely be important in unravelling
whether these timescales are associated with the axoneme
directly or arise from coupling to cytoplasmic components.
Additionally, we anticipate that directed evolution experi-
ments such as those already applied to Chlamydomonas [68]
can yield important information on the dynamics of photo-
taxis. For example, is it possible to evolve cells that exhibit
faster phototaxis, and if so, which aspect of the light response

changes? For the multicellular green algae, these kinds of
experiments may also impact on the organization of somatic
cells within the extracellular matrix, which has been shown to
exhibit significant variability [69].

Another aspect for future investigation sits within the gen-
eral area of control theory; the adaptive phototaxis mechanism
that is common to the Volvocine algae, and to other systems
such as Euglena [70], is one in which a chemomechanical
system achieves a fixed point by evolving in time so as to null
out a periodic signal. Two natural questions arise from this
observation. First, what evolutionary pathways may have led
to this behavior? Second, are there lessons for control theory
in general and perhaps even for autonomous vehicles [71] in
particular that can be deduced from this navigational strategy?
Finally, an obvious extension of the present work would be to
describe phototactic turns as slowly perturbed helical trajecto-
ries, along the lines followed for helical swimming in sperm
chemotaxis [30].

We close by emphasizing that the flagellar
photoresponse—and by extension phototaxis—is a complex
biological process encompassing many variables, and that
in addition to the short-term responses to light stimulation
studied here there are issues of long-term adaptation to
darkness or phototactic light that have only recently have
begun to be addressed [72]. Together with the dynamics
of phototaxis in concentrated suspensions [73], these are
important issues for further work.
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APPENDIX A: DETAILS OF THE ITERATED MAP FROM
SOLUTION OF THE INITIAL VALUE PROBLEM

Here we provide details of the derivation of the iterated
map for phototurns based on explicit solution of the initial
value problem for the adaptive response. For conciseness we
fix the eyespot position at k = 0 and set the time delay t; = 0.
We start from the dynamics (52), rewritten for each full turn
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n>0as
- @ P*cos¢sinT; nm <T < (n+ 1), neven,
aH” +H" = (A1)
0; nt <T <+ 1, nodd,
and
@ - P*cos¢sinT — H™: nr <T < @+ D, neven,
BP” + P = @ (A2)
—H"™; nt <T <+ 1)m, nodd.
Solving this in a piecewise fashion we obtain
HO — P*cosg o C,e~T—rmfe 4 isin T —cosT; nn <T < (n+ m, neven, A3)
=P cosp—— X
1+a? C,e~T—nmfe, nr <T < (m+ Dm, nodd,

where C, = (1 — r"*!)/(1 — r) and r = e~™/%. Continuity of H at the end of each light interval can be verified by noting that
H"(T = (n+ 1))  rC, + 1 for even n, while H"(T = nr) o C, for the subsequent odd 7, and observing that 1 4 rC, =

Cn+1 .

The solution for the photoresponse variable can be expressed as P = P* cos ¢ P™, where

AD,e= T8 _ A,Cre= T/ 4 AssinT + Aycos T

P —
Aane—(T—nﬂ)/ﬁ _ AZCne—(T—nﬂ)/ot;

with Dn = (1 — qn+])/(1 — q), q= e‘”/ﬂ, and

off o?

A= —— A=,
T+ —8) T (d+ad)-p)

Since n represents the number of half-turns, with even(odd)
values for the illuminated(shaded) periods, we integrate for
each value of n > 0 to obtain

(n+1)m
$ni1 = ¢n — P*cos ¢ / P"WsinTdT. (A6)

This has the form of Eq. (57), but with an n-dependent &,

&, = —P"E,(w3), (AT)
where
B*A\Du(q+ 1)
En(ws) = { —?ArCy(r + 1) + Z A3, neven,
—B2A 1D, (g + 1)+ a?A>Cy(r +1), nodd.
(A8)

From the general structure of the iterated map, it is clear
that the larger is &, the larger the angular change within a
given half-turn. It is of interest then to consider the average
E = (Bp + E;)/2 over the first two half-turns, which gives
the average coefficient

§ = —P"E(»3). (A9)
The quantity & can be interpreted as the initial photoresponse
function analogous to the steady-state response embodied in
the amplitude G(w3) and phase x in Eq. (31). The functions
G(w3) cos xo(w3) and E are compared in Fig. 22, where we
see that the transient response function Z is about 10% higher
at its peak, a feature that can be attributed to the fact that the
hidden variable H has not yet built up to its steady value. But
the two functions are otherwise remarkably similar, indicating
the accuracy of the steady-state approximation.

A3

nt <T <+ 1)m, neven,
(A4)
nt <T <+ 1), nodd,
a(a + B) a(l —ap) (A5)

- (14 B8H(1 +a?)’ 4= (1481 +a?)

More generally, the coefficients E, exhibit an oscillating
decay with n, converging as n — 00 to

2 1+ 2414 b
- ( ) ﬁ AllTZ—a AZIT:—FEA:;, neven,
Soolws) = 1
—ﬁzAlﬁ + oAyt nodd.

The connection to the steady-state approximation is obtained
by considering the average E,(w3) over the light and dark

2 0.75}

0.5f

S

0.1 1 10
fr (Hz)

FIG. 22. Response functions. For k = 7, = 0, the graph com-

pares the steady-state response function (7/4)G(ws)cos xp in

Eq. (31) (dashed blue), the initial average response &(ws) in Eq. (A9)

(green) and the n — oo limit of the transient response E.(w3)
(dashed red), as functions of f, = ws/2m.
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cycles (hence over even and odd values of n), where one finds
Boo(w3) = (7 /4)A3, or

B (w3) = %G(wgcos(x@), (A10)

completely consistent with the steady-state analysis (58).

In the animation shown in Supplemental Video 2 [44] of
the cell reorientation dynamics we evolve the iterated map
using the {&,} and linearly interpolate between the values ¢,
to obtain a smooth function of time.

APPENDIX B: DETAILS OF CONTINUOUS MODEL

Using the solution of the initial value problem we can
compute the continuous approximation to the evolution

J

—BADye 7 (SInT 4+ BcosT) + ahrCoe 2

T

sin42T) +A4sin22T _ AB% +,32A1 —OlZAz,

equation for ¢ by integrating over the fast photoresponse
variables within a turn. From the governing equation ¢y =
—P*cos ¢ P™(T)sin T, we obtain

®(T) = 2tan~' (e 772" D), (B1)
where
T ~
o'"N(T) = / P™(T")sinT'dT’. (B2)
0
From Eq. (A4) we find
a (sinT +acosT)
nt <T < (n+ 1), neven,
(B3)

—/BAID,,eJ%(sin T+ BcosT)+ aA2Cne_T%m(sin T +acosT)

+A3 (nzl)” b

nr <T < m+ 1), nodd.

As shown in Fig. 23, the function Q"(T') typically increases monotonically with 7', exhibiting small oscillations around an
interpolant that grows nearly linearly with time. These magnitudes of these oscillations vary between the light and dark halves
of each turn. To quantify this asymmetry we compute the values Q" (nx) at the start of each half-turn,

Q" (nm) = {

and the gradients Q, = [Q""V((n + 1)m) — Q™ (nm)]/7 of
line segments connecting the half-turn endpoints. One can
easily show that @, = &, /7. The light-dark variation of these
slopes serves as a measure of the smoothness of the reorien-
tation dynamics, and from the first two values Qy and Q,
we define two relevant quantities: the strength of the initial
response as measured by the average of the slopes of the first
two line segments Q=(Q)+ 9)) /2 = E/m, and its smooth-
ness, as measured by the ratio Y = Q;/Qy.

If, as in Fig. 23, we approximate Q)(T) by the line
QT , then the reorientation dynamics (B2) takes the simple
form

®(T) = 2tan~' (e 7" 9T), (B4)

from which we identify the characteristic relaxation time 7,
(in physical units) analogous to Eq. (62),

1 &
T el0 17719

Finally, we explore the space of reorientation dynamics
by probing Q(T") through its dependency on parameters o
and B. Our strategy is to observe how the quantities Q(a, 8)
[Fig. 24(a)] and Y(«, B) [Fig. 24(b)], which are also functions
of o and B, and essentially describe the curve’s shape, vary.
First, we make the observation that the («, ) pairs acquired
from micropipette experiments [step-up and frequency re-
sponse; Fig. 12(b)] lie in the high-slope area (Q = 0.27) of
the O(a, B) function [Figs. 24(a) and 24(c)]. We also ob-

(BS)

B*A1(1 = Dy) —a?Ar(1 — Cy) + A3"F,
BA\D, — a*ArC, + A3 UEDE

n even,
n odd,

(

serve that the same data lie in an area of relatively moderate
symmetry () = 0.34) of the ) («, B) function [red markers

N

QUN(T), Qapprox(T)

[\

o on I

4dr
T (rad)

FIG. 23. The functions Q(T). The function Q™ (T) (blue), de-
fined in a piecewise manner between endpoints (blue circles), can be
approximated as a straight line Qupprox (') = OT (red). Both Q™(T')
and Q were computed with the experimentally derived 7, = 0.009 s
and 7, = 0.524 s. The value of f, was taken to be 1.67 Hz. The value
of Q(ws, T,, T,) Was calculated to be 0.268.
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FIG. 24. Contour plot maps of Q (a) and ) (b) with («, B) pairs acquired from micropipette experiments shown with red markers (step up
as “x” and frequency as “0”). (c)—(e) Plots of QU”(T") (blue line) and linear approximation Qupprox(T) = QT (red line) for three (o, B) value
pairs shown in panels (a) and (b) as circle, square, and triangle, respectively. (c) is based on experimental data (open red circle), (d) corresponds
to YV & 0.7 (solid purple square), and (e) corresponds to ) =~ 0 (solid purple triangle).

in Fig. 24(b)], as opposed to the extreme cases of highest  24(d)] and lowest symmetry, i.e., J & 0 [solid purple triangle
symmetry, i.e., ) & 0.7 [solid purple square in Figs. 24(b) and  in Figs. 24(b) and 24(e)].
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