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Defects and traveling-wave states in nonequilibrium patterns with broken parity
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A class of elementary defects of one-dimensional periodic patterns found far from equilibrium
is described. They are “spatiotemporal grain boundaries” between regions in which the parity
symmetry of the cellular pattern is broken in the opposite of two senses. The defect cores act as
sources or sinks of traveling waves and cellular structures by means of a periodic phase instability
closely related to “phase slips” in superconducting wires. An explanation for observations of an-
nihilating collisions between two finite domains of opposite broken parity follows from these re-

sults.

Nonequilibrium systems as distinct as a layer of fluid
heated from below and a moving solid-liquid interface
often exhibit periodic patterns in space and time.'
Whether in Rayleigh-Bénard convection or in directional
solidification, many long-wavelength properties of these
patterns are consistent with a general class of dynamics
based solely on symmetry considerations.? In particular,
the existence of a discrete translational symmetry as well
as reflection symmetry (parity) is a common feature in ex-
periments, and underlies many such theoretical treat-
ments. However, several recent experiments®~’ on one-
dimensional pattern-forming systems, in the contexts of
solidification, viscous fingering, and convection, are con-
sistent with the notion®® that these periodic “cellular”
structures may undergo a secondary instability at which
the parity symmetry of the pattern is broken.

A one-dimensional pattern U(x,?) with a region of bro-
ken parity (asymmetry) may be resolved into symmetric
and antisymmetric components, Us and U, respectively,

Ux,t) =S, 1) Us(x+¢(x,t))
+A(x,)U(x+¢(x,1)), m

where S and A are real amplitudes and ¢(x,?) is the phase
of the pattern. The amplitude 4 (x,?) serves as the order
parameter of the broken parity, vanishing outside the re-
gion of asymmetry. Now, in one-dimensional systems,
there is, in general, a twofold degeneracy of broken-parity
states, corresponding to the two possible signs of 4. In ad-
dition, an important consequence of basic symmetry con-
siderations® is that the breaking of parity leads to a prop-
agation of the pattern in a direction determined by the
sign of A. There are thus two possible directions of propa-
gation of the pattern. Motivated primarily by recent ex-
periments,>> we study here patterns in which the two
states coexist, the junction between them being an ele-
mentary defect '® of broken-parity states; it is an example
of a spatiotemporal grain boundary.

Important evidence of a parity-breaking transition is
the observation® of slowly spreading domains of asym-
metric cells (originally termed “solitary modes™) that
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move across the periodic interface. Their properties are
suggestive of those of nucleated inclusions of a dynamical-
ly more stable asymmetric state. It is observed®* that
when two domains of different length, moving in opposite
directions, collide, they leave behind a single inclusion
propagating in the direction of the longer one, whose
length is approximately the difference between the two.
This remarkable rule of length subtraction is quite unlike
that associated with solitary waves, and emphasizes the
strongly dissipative nature of the dynamics in these sys-
tems. Figure 1 is a graphical representation of such a col-
lision, obtained from numerical solution of a model de-
scribed below; Fig. 1(a) showing the envelope function
A(x), Fig. 1(b) showing the interface pattern, recon-
structed from considerations appropriate to directional
solidification. As in experiment, the annihilation shown
leads to the creation of new symmetric cells in the region
of the collision, where the amplitude A4 exhibits a local
kink shape crossing through zero. In a space-time portrait
like Fig. 1, it is clear that the creation of a new cell is a
“space-time dislocation.” Figure 2 illustrates a per-
manent grain boundary between traveling-wave states, the
junction (where A4 =0) being the site of the periodic
space-time dislocations.

In this paper we propose a mathematical description of
the dynamics of spatiotemporal grain boundaries in pat-
terns with broken parity and suggest the existence of an
important connection between such boundaries and the
dynamics of collisions of localized asymmetric regions.
We find that a consistent description of the creation of
new cells in both of these contexts requires an important
coupling between the symmetric and antisymmetric com-
ponents into which the pattern is resolved. In brief, we
know on rather general grounds that it is most natural to
consider the dynamics of a parity-symmetric pattern Us
in terms of a complex amplitude B =S exp(i¢), the result-
ing dynamics of B bearing a strong resemblance to the
time-dependent Ginzburg-Landau (TDGL) theory of a
complex superconducting order parameter. The proposed
coupling of a scalar field A to B is then like that found in
the TDGL description of a superconductor in an electric
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FIG. 1. Partially annihilating collision between inclusions of broken parity of opposite sense. (a) The antisymmetry order parame-
ter A(x), with time increasing upward and displaced vertically for clarity. (b) The interface pattern U(x), at time intervals one tenth
those in (a). Note how the number of cells in (b) has increased during the collision.

field, A playing the role of the electrochemical potential.
At the core of a grain boundary and at the center of a col-
lision, this coupling leads to periodic phase disturbances
(related to the Eckhaus instability of the underlying sym-
metric component) analogous to phase slip centers'' and
phase slip oscillators'? in one-dimensional superconduc-
tors.

We begin by recalling the essential symmetry con-
siderations® underlying the form of amplitude equations'>
for A and ¢ at a parity-breaking transition. Referring to
the decomposition in Eq. (1), in which Ug is an even func-
tion of its argument and U, is odd, we find the dynamics
of A and ¢ to be invariant under the joint transformations
x— —x, ¢— —¢ and A— —A, S— S, as well as to
uniform shifts ¢— ¢+const. Accordingly, among the
leading terms in the normal form for the evolution of the
phase are the contributions

O =pxxtwA+ -, )

where o is some coupling constant and subscripts indicate
differentiation. As remarked earlier, (2) with (1) implies
that a homogeneous broken-parity state (450) is a trav-
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eling structure, with ¢ =wAt.

The relevance of these phase dynamics for the pattern
evolution near a grain boundary may be seen by noting
that when the broken-parity state is dynamically the most
stable, the order parameter may take on either of two
values labeled + A4*. Far on either side of the defect, (2)
leads to the phase evolution ¢ = + wA *¢, that is, traveling
waves with opposite propagation directions. Clearly, how-
ever, this differential forcing of the phase leads to an
ever-increasing phase gradient at the core of the defect,
the continual growth of which is physically untenable. It
may be resolved within a description of the long-
wavelength dynamics based on a complex amplitude, a
formalism well known in the study of hydrodynamic insta-
bilities,'!> within which phase gradients lead to the local
vanishing of the amplitude of the periodic pattern. At
such a point, the phase is undefined, allowing the total
phase across the defect to change by 2z, corresponding to
the creation or destruction of a cell. This process is remin-
iscent of the appearance of phase slips in a one-
dimensional superconducting wire in the presence of a
uniform electric field.!! There, a sufficiently large current
(phase gradient) destabilizes the superconducting order

0 T T B T
0 20 40 60

+
(b)

FIG. 2. (a) A spatiotemporal grain boundary, a source for traveling waves, in a system with broken parity. (b) The modulus of the
symmetric amplitude at the defect core (x =0) as a function of time, showing the periodic zero of | B]|.
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parameter.

We propose the following phenomenological model to
address these issues for systems with broken parity.'* Let
B(x,t) =Se" be the complex amplitude describing the
symmetric component of the pattern as resolved in (1). A
simple dynamics for B beyond the initial supercritical in-
stability of the homogeneous state (e.g., the Mullins-
Sekerka instability) is

B,=B,,+vB— |B|’B. 3)

Here, v is viewed as the fundamental control parameter of
the problem, proportional to the deviation » —r. of some
experimental control parameter r from its value at onset,
r.. The dynamics in Eq. (2) are embodied in a coupling
term iwAB in (3), and this is, in fact, perhaps the simplest
one that respects the relevant symmetries. We may write
the dynamics for B in the suggestive form

(8, —iwA)B=B,.,+vB— |B|*B, 4)

precisely the Ginzburg-Landau equation for a supercon-
ductor, with the term A playing the role of —2u./h,
where u. is the electrochemical potential.'> Provided
| B| =0, it is meaningful to speak of the magnitude and
phase of B and so to deduce the phase equation

O =¢xx+2S —lsx¢x+wA s (5)

the generalization of (2) to the case of a spatially varying
symmetric amplitude. The associated amplitude equation

S, =S+ (v—92)S—S3, 6)

reveals the destabilizing effects of large phase gradients.

In generalizing the dynamics for the parity-breaking or-
der parameter A to account for the complex nature of the
symmetric amplitude, it is useful to separate the equation
of motion of A into “variational” and nonvariational”
parts. The former derives from the relation A, =—§.L/
8A, with the Lyapunov functional £=4 A2+F(A4),
where the even polynomial F(A) distinguishes between
supercritical and subcritical bifurcations; for the latter
(perhaps more relevant to experiments on directional
solidification) a paradigmatic form is

F(A)=—suA’— fad*+ £ AS, @)

with @ > 0. [For directional viscous fingering,> supercriti-
cal dynamics with F(4) = 3 u4*+ ; A* may be more ap-
propriate.] By symmetry, the minima of F at 4 =+ 4*
are of equal depth. It was suggested previously® that
several of the observed parity-breaking transitions are
well described by subcritical dynamics for A,

the last two nonvariational terms being responsible for the
motion of inclusions of the antisymmetric state and for
various phenomena associated with wavelength relaxation.

To generalize (8), note that the phase gradient ¢, is
proportional to the current j«i(BBY —B*B,), B* being
the complex conjugate of B. Making the additional plau-
sible assumption that it is the growth in the amplitude of
the symmetric component that drives the parity-breaking
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transition, we conclude that the linear stability of A
should decrease as | B| increases. We thus arrive at the
model

A=A+ (u+|B|)A+ad’—A4°
+i§(BB,‘: —B*B.)A+yAA, . )

In the simplest interpretation, the parameters p, a, €, and
y are assumed fixed, with v in (4) the relevant control pa-
rameter.

The dynamics in (4) and (9) reproduces all of the previ-
ously described® phenomena of wavelength selection and
relaxation associated with the propagation of parity bub-
bles, and now provides for a coherent picture of the
creation of new cells, as we now summarize.'® For
g=u+|B|*>p* = — & a? (the Maxwell point at which
the broken parity and symmetric states are of equal stabil-
ity), the state with 40 becomes dynamically stable.
Suppose then that a system with > u* and B=v'? js
prepared with a kink-shaped amplitude 4(x). How does
it evolve? Figures 2(a) and 2(b) show the results of nu-
merical integration of (4) and (9) and a reconstruction'’
of the pattern U, with the dynamics of B obtained by solv-
ing for u(x,t),v(x,?) in the decomposition B =u +iv. As
the initially uniform state develops a phase gradient near
x =0, the modulus of B steadily decreases until both the
real and imaginary parts smoothly cross through zero.
This is reminiscent of the Eckhaus instability exhibited by
B even in the absence of an inhomogeneous forcing, where
the state with an imposed phase gradient, ¢ =Qx, S
=(v—02)"2 becomes unstable for |Q| sufficiently
large. Note that the nonvariational forcing of A4 keeps the
junction stationary. The vanishing of B at the core of the
grain boundary, shown in Fig. 2(b), is found to be periodic
in time, the frequency proportional to wA4*, the rate at
which the phase gradient grows. In this sense, the phase
dynamics in (2) and (4) are seen as analogous to Joseph-
son relations in superconductivity, and the periodic zero of
B is essentially identical to those that occur at phase slip
oscillators in superconductors.'? A key experimental test
of the validity of the above description of a spatiotemporal
grain boundary would be a measurement of this behavior
of the symmetric component of the pattern.

Returning to the collision in Fig. 1, we see that the
junction between these two finite domains is essentially a
transient grain boundary, the order parameter A locally
having the shape of the kink connecting the two states
* A*. During the course of the collision the junction it-
self remains fixed in space, as a consequence of the equal
and opposite variational and nonvariational forcing on its
two halves, but the two outer edges continue traveling in-
ward while a periodic phase instability (or several) occurs
at the junction, yielding new cells. When viewed in terms
of, say, the maxima of the pattern U in Fig. 1(b), these in-
stabilities during a collision are spatiotemporal disloca-
tions. As the far edge of the shorter domain reaches the
defect core, the broken-parity order parameter collapses
to zero, leaving the remainder of the longer domain to
propagate in its original direction, slowly spreading as be-
fore. Were the domains of more equal length, the col-
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lision would have led to total annihilation. In general, the
length subtraction rule is approximate up to deviations of
a few correlation lengths of the order parameter [roughly
the size of the critical nucleus associated with the free en-
ergy F(A4)].

To summarize, we have shown, in qualitative accord
with experiments, that certain defects in hydrodynamic
systems exhibiting transitions to states of broken parity
may be viewed as spatiotemporal grain boundaries. The
cores of such defects act as sources or sinks of traveling
waves by means of periodic phase instabilities. The dy-
namics of such structures appears to play an important
role in the phenomena found during collisions of propaga-
ting inclusions of the broken-parity state.

Finally, we may expect that the formal connection be-
tween the dynamics of systems with broken parity and
those of superconductors in applied electric fields may be

extended. For example, superconductivity is, of course,
intimately linked with the presence of a gauge field, the
vector potential. Is there an analog of a gauge field'® in
the dynamics of periodic nonequilibrium patterns?
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