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Inertially driven buckling and overturning of jets in a Hele-Shaw cell
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We study a fluid jet descending through stratified surroundings at low Reynolds number in Hele-Shaw flow.
The jet buckles and overturns inside a conduit of entrained fluid which supports smooth or unstable traveling
waves. A model of the recirculating flow within the conduit shows that buckling and waves arise from
Kelvin-Helmholtz instabilities and quantitatively accounts for the main experimental observations. Beyond the
onset of the instability, a damped, forced Burgers’ equation obtained from corrections to Darcy’s law for small
Reynolds number governs the interface dynamics and supports singularities corresponding to the observed jet
overturning and unstable waves.
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Fluid flow between parallel plates, the geometry of Hele-(Figs. 2 and 3 we discuss a generalization of Darcy’s law to
Shaw cells, is often considered a quintessential low Reynoldisclude weak inertia, expressing the results through coupled
number systerfil]. Yet, in the laboratory it is straightforward partial differential equations for the vortex sheet strengét
to achieve a Reynolds numbgRe) of order 1 with conven- the interface between the two fluids and the position of the
tional fluids and relatively small plate spacings. This raisednterface itself, by analogy to the approach for the inviscid
the interesting possibility of investigating inertial effects in acase of Pugh and Shell¢g4]. _
controlled manner by varying the fluid viscosity, cell geom- ~ The only significant optical distinction between the jet
etry, and gravitational forcing. Indeed, some of these inertiaRnd surrounding fluid is a small difference in their indices of
effects have been studied, such as irreversibjlyand in- -
stabilities in otherwise stable systefi8s-5].

A classic example of an inertial instability is the buckling
of fluid jets, whose long history starts from the work of Tay-
lor [6] and continues more recently’,8] with jets sur-
rounded by air impacting on a surface. Variants of these phe-
nomena have geophysicdld], astrophysical[10], and
biological counterparts. Indeed, our primary motivation is
the understanding of instabilities of descending jets of
bacteria-rich fluid in bioconvecting suspensiofil]. We
study a simplified model of that system suggested by
Kessler: the dynamics of saline jets descending through a
surrounding fluid with a linear salinity gradient. We find that
these jets gradually decelerate and budie. 1). Unlike
those mentioned above, our system is dominated by viscous
shear. This case has been studied theoreti¢aly for jets
surrounded by a fluid of uniform density. As a first approach
to understanding the full three-dimensional[j&8] we study
here the analogous effect in Hele-Shaw flow. As a function
of the flow rate of the jet, we find experimentally a super-
critical bifurcation in which the amplitude of the buckled jet
is the order parameter, and its oscillation frequency is finite
at onset. This buckling occurs within an entraireehduitof
fresh water, a consequence of the surrounding density gradi-
ent. The existence and characteristics of this conduit consti-
tutes a nontrivial free-boundary problem which has not yet
been solved fully. Instead, we derive an approximate conduit
shape by proposing its existence and solving the Stokes
equations under simplifying assumptions and constraints. A
key consequence of this analysis is a fluid velocity profile
consistent with the development of linear Kelvin-Helmholtz
instabilities of the jet and the conduit boundaries. We show
that this quantitatively explains the major observed features
of the buckling. To describe the nonlinear behavior of the jet FIG. 1. A1 M/l jet descending into a gradient 0.04(M¢m) at
within the conduit, specifically its secondary instabilities velocities from 0.02 to 0.18 cm/s. Scale is 1 cm.
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water and reagent-grade Na@ligma, with a diffusion con-
stant ofD=1.5x10 ° cn?/s[16]. Linear salinity gradients
were produced by a variant of the well-known “two-bucket”
method in which the fluid flow was controlled by peristaltic
pumps. A typical gradient is 0.04 I/cm) (0.024 g/crfl)
and has a concentration of 1.0 M/I at the bottom and 0 M/l at
the top, with a maximum variation in the index of refraction
of about 0.01[16]. Jet concentrations of 1-2 M/l were in-
vestigated. For the above valueswfthe Reynolds number
of the jet (naturally calculated asw/v), wherew the jet
diameter and = 0.01 cn¥/s the kinematic viscosity of water,
is in the range of 0.03-3.

As shown in Fig. 1, at low flow velocities the jet is
straight, disappearing by diffusion at a termination length
which increases with flow rate. For each gradient and jet

FIG. 2. Waves at the conduit edge just below the nozzle, at dnolarity there is a critical velocityl; above which the jet
velocityu= 1.5 cm/$>u, for the same jet molarity and gradient as buckles and’ grows more slowly. The density of the jet in
in Fig. 1. The buckled region of the jet further down is not shown. this figure equals the fluid density at thettomof the cham-
Upper sequence—growth and subsequent degedyite circles; ber, so its termination at a small fraction of the depth of the
lower sequence—unstable growth. Images are 0.8 s apart; scale bgifadient indicates that it loses salt through diffusion. Salt
is 0.5 cm. diffusion acrossw occurs on a time scaldp~w?/D

~170 s, while, at the lowest flow rates the advection tige
refraction. This feature makes the flow patterns observablgor a fluid element to traverse the length-2 cm ist,
best with a technique such as Schlieren imaging that is sen<¢/u~100 s. Clearly, there is sufficient time for appre-
sitive to gradients of refractive index. Our Schlieren systenciable diffusive broadening to occur, as seen in the figure.
is in the standard Z” configuration, with video images ac- At all flow rates we find that the jet, whether straight or
quired from a digital charge-coupled devi@€CD) camera  buckled, is traveling inside a conduit whose edges can be
under computer contrglL5]. The Hele-Shaw cell consists of clearly seen in Figs. 1-3. Near the nozzle the conduit flares
two 30x30 cm polycarbonate sheets 12.7 mm thick, sepaupward away from the jet, narrows to a minimum somewhat
rated by a rubber gasket 3 mm thick. A needle with interiorbelow the nozzle, and then increases steadily downward.
diameter of 0.05 cnf25 ga at the top of the chamber is the When the jet buckles, its amplitude maxima always approach
entry point for the jet. Two needles inserted through portshe edges of the conduit as they travel downward. Observing
(Instech Labs, PMINP-SIL-C35mounted at the bottom of the motion of tracer particles (18m hollow glass spheres,
one of the plates are the entry points for the fluid surroundpotters Industries we determined that the conduit consists
The jet is forced into the chamber with a syringe pump driv-of essentially fresh water viscously entrained from above by
ing a gas-tight glass syringe. We shall use the average fluighe jet to the point at which buoyancy drives it upward along
velocity u at the needle associated with the pump-controlledhe conduit edge. Evidence for recirculation within the con-
flux as our control parameter. Velocities range from 0.02 to Iduit can clearly be seen at large flow rates, when wavelike
cm/s. Solutions were made from reverse osmosis purifie@xcitations( blips”) (Fig. 2) travel up the edg¢9].

Beyond the critical velocity we see a classical bifurcation
scenario as mentioned earlier. This is shown in Fig. 4, where
we have recorded the amplitude, frequency, and initial wave-
length as a function ofi for a particular gradient and jet
density. The amplitudémeasured for the wave farthest from
the nozzle, where the conduit has saturpi@ad frequency
data are consistent with a supercritical Hopf bifurcation.
Over a wide range of flow rates beyongd the jet maintains
its thickness as it descends, and its wavelength decreases.
Beyondu, and with increasing nozzle velocity the buckled
jet amplitude either transiently grows and then decays to-
ward the termination point or a secondary instability devel-
ops as the jet continues to grow and eventually overturns
(Fig. 3). Because the density difference between the conduit
and the surrounding gradient decreases with height, so that
the fluid velocity at the conduit edge likewise decreases, a
similar effect occurs with the blips: they either transiently

FIG. 3. Buckling and overturning of a jet descending through agrow and then decay or continue to grow and eventually
gradient, with parameters as in Fig. 1 amd 0.3 cm/s. Images are form a separate pluméFig. 2). The periodicity of these
0.66s apart; scale bar is 1 cm. waves appears to coincide with the buckling frequency of the
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0.0 u, 0.1 0.2 Helmholtz (KH) instability of this profile[17], we deduce

u (cm/s) that the most unstable mode of that instability will be at a

wavelength of 4~ 1.2 cm. As shown in Fig. @) this is in
FIG. 4. Maximum buckling amplitud¢a), frequency(b), and  good agreement with the experiments.ulfand U are the
initial wavelength (c) versus flow rate for a gradient of 0.04 maximum jet and conduit velocities, respectively, then the
M/(lcm) and a 1.0 M/I_ jet. Criti_ca_l velocity, and dashed lines in propagation speed of the wave=(u—T)/2, follows di-
(b) and(c) are theoretical predictions. rectly from a generalization of the KH stability analysis in
Hele-Shaw flow{5]. Near the top of the chambéi<u, as
jet far below the region shown. There are corresponding “anthe conduit is much wider than the jet, se-u/2, yielding a
tiblips” on the jet itself that travel downward and may also frequency w~ (wr/4d)u, also in good agreement with the
grow so large as to detach. _ data near onsdFig. 4b)]. The corresponding period of the
A three-dimensional model of the conduit shape at I0WKH wave is 8/u. When this time is shorter than the typical
Reynolds number leads to a quantitative explanation of jefjiffusion timetp, the instability can occur. Equating these
buckling as a Kelvin-Helmholtz instability. Since the conduit o time scales leads to a predicted critical velocity
size varies on a scale large compared to its width, we study- gpg/w2. For the data showny,~0.015 cm/s, in good
as a first approximation taree-fluidmodel consisting of a jet  agreement with the observed value. An additional important
of densityp; and widthw surrounded by an upward-flowing feature of the velocity profile in Fig. 5 is an inflection point
fresh-water conduitdensity po and widthwc), in turn sur-  npear the conduit edge, providing the source for a second KH
rounded by a denser outer fluigd), all with uniform den-  jnstapility, corresponding to the blips shown in Fig. 2.
sities and only vertical velocitias Fixing the three densities A theory of the fully developed buckled jet is lacking.
and the jet width, we determine numerically the single freeqowever, it is possible to gain insight into that nonlinear
parametemw, by the simple hypothesis of zero total vertical hehavior and the onset of inertially driven secondary insta-
flux. The shape of the conduit in the presence of a gradient igjlities by extending leading-order inertial corrections to
then deduced by taking these results and parametrically ploparcy’s law[3,5] to the vortex sheet representation for inter-
tlng the conduit width versus vertical denSity difference. face dynamics_ Consider a Hele-Shaw cell of lateral dimen-
For rectangular channel geometry, with the piecewisesionsx L, with plate spacingi<L, filled with fluids of
constant density described above, we first soly€°U  common viscosity;. Assuming that there exists a character-
=gp(x) using Green’s function and then averagever the  istic velocity U, we define anisotropic rescalings=Uyv, t
gap width to obtairu, the reverse order of that used when =(L/U)1, X' =x/L, Yy’ =y/L, andz' =z/d, where §,y) are
applying Darcy’s law. This yields a continuous velocity pro- jn-plane coordinates arglis perpendicular to the plates. Ne-
file, such as that in Fig. (&), which corresponds to the ex- glecting the component of in the z direction, and introduc-

perimental case in which the gap spacthy comparable 10 ing the rescalings into the Navier-Stokes equation, we obtain
the jet width. The associated conduit, shown in Fi¢h)5

displays the experimental feature of narrowing with depth, a

consequence of the slower jet velocity and thus weaker vis- dlav 2 v
cous entrainment. Parallel to the jet-conduit interface are two Re—|—+(v-V/)v|=— V'p+—, (1)
flows in opposite directions, and this gives rise to a Kelvin- LidT Uo7l 9z'?

Helmholtz instability. The transition zone connecting the two
flows has a finite width and can be shown to follow approxi-
mately the form tanhtx/d); the transition zone width is set whereV'=(d/dx")X+ (d/dy’)y and Re=pUd/ 5.
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Expanding v in powers of Re asv=vy+Rev; For thin fluid layers, such as the jet itself or the conduit,
+0(Ré), it is then a straightforward exercise to substitutethe dynamics ofy can be incorporated into an equation of
into Eq. (1), solve forv, andv; subject to the usual stick motion of the interfaces) [20]. For two interfaces whose
boundary conditions at the plates, average overtbeordi-  displacements are reflection-symmetric about a midiae
nate, and then undo the original rescalings to obtain the avD Fig. 2), one obtains a lubrication-type equation which at
eraged velocityu up to first order in Re. The velocity field €ading orderirhis h;=—(hy), . As discussed by Pugh and
can be recast in terms of the vortex sheet strengt the Shelley[14], given suitable initial conditions, these coupled
. . T partial differential equations can display an unbounded
interfacgs) T betwe_en the two_fluids, Wherey—_t~ (uy finite-time singularity forh or can simply relax to a traveling
—Up)|r [18]. Expandingy as yo+Rey; +--- and using the  \yaye with constanty. This is consistent with the observa-
continuity of A-u at T" yields the inhomogeneous damped tjons shown in Fig. 2, even though the unstable growth mode

Burgers’ equation is not truly unbounded. This discrepancy stems from the lim-
42 ited domain of validity of the lubrication approximation.
Y+ ——| yt+ = vy, | =t Auglp. 2) For meandering displacements the leading-order interfa-
10v 77 cial equation of motion describes a wate= — yhy, and as

, ) , , such does not have the flux form of the reflection-symmetric
In general, the right-hand side of E@) is a function of the  case. Here, the singularity i is inherited directly byh,
interface shape. For simplicity, consider a nearly straight inwhich will become multivalued at a finite time. This is con-
terface between two fluids with density differende that  sjstent with the overturning in Fig. 3.
varies linearly with vertical positioy. Then the right-hand We have presented a number of experimental observations
side of Eq.(2) is proportional toA p(y)g, which we write as  concerning the rich dynamics of decelerated jets at finite
K—ay. The nonlinearity is responsible for steepening theReynolds number, as well as a theoretical scenario which
vorticity, while the standard contribution arising from Dar- should serve as a starting point for a more rigorous under-
cy’s law (first term on the left-hand sidés responsible for standing of the phenomena in Hele-Shaw flow, as well as
damping it. The competing effects in the damped version oproviding general mechanisms that hold in three dimensions
Burgers’ equation allow shocks to occur only under suitablg13]. Among the important open problems are a detailed un-
initial conditions. Solving Eq(2) by the method of charac- derstanding of the conduit formation and its nonlinear inter-
teristics[19], shocks occur if action with the buckled jet.
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