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The interplay of asymmetric interactions and density fluctuations in binary liquid mixtures is shown to produce a breakdown 

of the law of rectilinear diameter. We find that this singularity and the overall phase diagram asymmetry are suppressed with 

increasing pressure. These considerations suggest the systems in which the diameter anomaly should be most readily observed. 

The coexistence curves of virtually all phase-sepa- 
rating binary liquid mixtures are asymmetric under in- 

terchange of the two components, reflecting their un- 
derlying microscopic dissimilarity. Basic chemical con- 
siderations show that this lack of component-exchange 
symmetry arises from differences both in molecular 
sizes and in the energies of interactions. Despite these 
asymmetries, theory and experiment [l] show that 
critical solution points in binary mixtures are in the 
universality class of the Ising ferromagnet, which has 
“up-down” symmetry at criticality. While this model 
is a suitable starting point in studying such mixtures, 
it is clear that to understand the complexities of real 
systems one must introduce degrees of freedom be- 
yond those which merely describe substitution of one 
component for the other. 

At the most fundamental level, a complete macro- 
scopic description of a binary mixture requires three 
thermodynamic fields. These are conventionally taken 
to be temperature, pressure, and the chemical poten- 
tial difference between the two components A and B. 
In the usual mixture magnet correspondence, however, 
in which all lattice sites are occupied by particles of 
one species or the other, density fluctuations are left 
out, as if the pressure were infinite. In that limit, and 

within the approximation to our model described be- 

low, energetic asymmetries serve only to redefine the 
component chemical potential, and do not result in 
phase diagram asymmetry. 

In this letter, then, we study a microscopic lattice 
hamiltonian which reveals in detail a mechanism by 
which interaction-energy asymmetry leads to coex- 
istence-curve asymmetry when the constraint of in- 
finite pressure is relaxed. As first suggested by Widom 
and Rowlinson [2], the diameter of a coexistence 
curve (i.e., the locus of tie-line midpoints) may, in 
addition to deviating from the line of compositional 
symmetry, exhibit a singular temperature dependence. 
Subsequent model calculations [3] and renormaliza- 

tion-group studies [4] have confirmed this prediction, 
and a thermodynamic argument suggests its general- 
ity [S] . Yet, this singularity has defied conclusive ex- 
perimental verification [6 1, and has not been explained 
theoretically from a microscopic viewpoint. The mod- 
el studied here ties the amplitude of the singularity to 
a microscopic description of the interactions in the 
system and to density fluctuations, and in so doing 
suggests the systems in which the anomaly should be 

most readily observed. 
The density fluctuations in a binary liquid mixture 

0.3759601/85/$03.30 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

53 



Volume 112A, number 1.2 PHYSICS LETTERS 14 October 1985 

can be modeled by introducing vacancies into the usual 
Ising model description, thus the full Hamiltonian we 
study is 

-p 91= ~ Vgtit_ + C [hsi + A] ti , (1) 
i 

where 0 = l/k,T, and the first sum is over nearest 
neighbors (nn) on a cubic lattice. The “vacancy” vari- 

ables ti = 0 (vacant), 1 (occupied) are controlled by 
the chemical potential A, while the “compositional” 

variables Si = 21 (A, B) are governed by the field h. 
Pairwise interactions between occupied sites are de- 
noted by Vii. 

Of most relevance to this work are the many aque- 

ous mixtures of polar organic molecules which exhibit 
closed solubility loops, primarily due to entropic ef- 
fects associated with intermolecular hydrogen bonding. 
We describe this complex miscibility using the ideas 
embodied in the Walker-Vause (WV) hamiltonians 
[7,8], which describe both general and specific fea- 

tures of solubility phenomena in a variety of systems 

[9,101. 
Molecular orientational degrees of freedom in the 

WV models are given a discrete representation by the 
use of q-state Potts spins [ll], Ui = 1, . . . . 4, SO that 
the air interaction Vii can be written as Vij = V$ 
t J ii, a sum of symmetric and asymmetric terms with 

v; =K,(l -6,iSj)6”i”j+K*(i -6,iSj)(l -6aioj) 

Vi =fhl(si+sj)‘~i0j+ah2(si t~j)(l -60ioj). (2) 

In the above 6 is the Kronecker delta. In the symmet- 
ric limit, Vi = 0, the pair interaction reduces to that 

studied previously [9] ; in particular, K, represents 
the hydrogen bonding interaction between unlike mol- 
ecules, K3 is that for the like-molecule bonding and K2 
is the unlike-molecule van der WaaIs energy. The only 
symmetry-breaking fields in the hamiltonian, aside 
from the chemical potential h, are the field-like split- 
tings h, and h,, which act on the like-molecule bond- 
ing and nonbonding levels, respectively. 

We study the present model by a partial-trace ap- 
proximation derived previously [8], similar to those 
of a mean field theory of orientational interactions 
[ 121. The former consists of an exact summation over 
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the non-critical degrees of freedom (orientational and 
density fluctuations) on a single-bond graph, mapping 
the original model onto the Ising model with an effec- 

tive nn coupling and magnetic field. The reduced free 
energy per site f = -fiF/N in this approximation is 

f(IJ[ 1) =g(IJi)) +f*(K*(tJil) ,H*({Jil)) ( (3) 

where g is a smooth function of the original couplings 

and fields({Ji} = KI, K,, K3, h, h,, h,, A), and K,, 
HI are the effective coupling and magnetic field which 
enter into the free energyfl of the Ising model. The 
coexistence condition, HI = 0, determines the bare 

chemical potential, h, in terms of the remaining micro- 
scopic variables. The mole fractions of A molecules in 
the left-hand (-) and right-hand (t) branches of the 
coexistence curve are X, = (1 f m)/2, with the spon- 
taneous magnetization of the Ising spins m = (si> = af/ 
ah obtained from eq. (3): 

X, = i [l + @g/ah + e$K#h + mIiWI/~h),,,,] . (4) 

Here, eI = afI/aKI is the nearest neighbor correlation 

d(siSj), and mI = afI/aH, = (Si) the magnetization of 
the Ising model in the limit HI -+ O+. 

The degree of asymmetry in a coexistence curve is 
reflected in the deviation from one half of the diam- 
eter, which is given by Xd = (X+ + X-)/2. In our 
approximation, 

x, =i [I + (aglah teIaKI/ah),,l . (5) 

Clearly, in order for asymmetry to appear, the temper- 

ature-like quantities g and KI must depend on the bare 
one-body field h. This mixing of thermodynamic fields 
is the essence of the decorated-lattice calculations 

which predict a singular diameter [3], and also appears 
in the “revised” scaling equation of state proposed by 
Mermin and Rehr [5]. The breakdown of the law of 
rectilinear diameter arises from that part of the in- 

ternal energy of the Ising model, eI, which varies as 
t1 -01, where (Y is the specific heat exponent. 

From the partial-trace approximation, we find 

KI = iln(ZIZ,/Zz) , HI = $ln(Zr/Z,) , 

g = $ln(Z1Z2) - dK, + A , (6) 

where 
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Fig. 1. A calculated asymmetric phase diagram, and relative 
thermodynamic properties for an A + B liquid mixture. Tem- 
perature is T = - l/Ka, normalized to the critical coupling of 
the Ising model. (a) The coexistence curve (solid line) has 
A-rich (+) and B-rich (-) branches, terminating at upper 
(UCST) and lower (LCST) critical solution temperatures, 
and a diameter (dashed) which is extended into the one- 
phase region (dotted). The difference in entropy S per bond 
in the two branches is negative (b) arising in part from greater 
density fluctuations in the (-) branch (c). 

z, = 2 [qu% + q(q - 1)“2] t 2&-1s -I- q%-2 ) 

z, = s-2 [qu-2, t 4(4 - 1)“-2] t 2&-Is-1 t q%-2 ) 

z, = qx t CJ(CJ - 1)y t q%-1(, t s-l) + q%-2 ) (7) 

andx=eKi,y=e K2 ,z=eK3,r=e *,s=eh,z4=eh1, 

u=eh2. 

Fig. 1 illustrates the results of a calculation for a 
system with a closed-loop coexistence curve, and in 
which the interactions between AA pairs are energet- 
ically favored over the corresponding BB interactions 
(i.e., h,, h2 > 0). A qualitative understanding of the 
observed asymmetry can be obtained by considering 
interactional correlations in the system, that is, spin 
correlations conjugate to the various couplings and 
fields (Ji}. These derivatives of the free energy have 
the same form as eq. (4) for the order parameter con- 
jugate to h. In particular, the entropy difference (per 
bond) between the coexisting phases is 

(S+ - s_)/kB = (-2/d)mI c JiaHI/Ui . 
i 

(8) 

The essential result we find for a variety of systems 
is that the phase rich in the more strongly interacting 

component, say A, has a lower energy of mixing, while 
the other, less correlated phase, has more mixing and 
orientational entropy (fig. lb). In addition, the extent 
of local density fluctuations, as measured by the quan- 

tities D, = 1 - (fi)* (fig. lc), is greater in the B-rich 

phase. Thus, as a consequence of the asymmetries of 
the interactions, one phase has a larger effective co- 

ordination number than the other, even though all 

sites of the lattice are equivalent. This result should 
be contrasted with decorated-lattice calculations *l 
[3] of asymmetric coexistence curves and the singular 
diameter, in which the static structure of the lattice 
gives rise to broken compositional symmetry because 
of the presence of two inequivalent sets of sites with 
different coordination numbers. 

In the limit of no density fluctuations (A -+ +-), 
bothg and Kl become independent of h, and the co- 
existence curve is completely symmetric - indepen- 
dent of any asymmetries in the microscopic interac- 
tions. Of course, the diameter is temperature-indepen- 
dent in this case. This infinite-pressure symmetry is 
also seen in the van der Waals equation of state of a 

binary mixture, and the spin-l model for two-com- 
ponent systems [ 131. The absence of asymmetry in 
this limit may be an artifact of our approximation, 
but may be a more general characteristic of lattice-gas 
models of particles with orientational interactions, 
and the issue merits further study. Even so, we still 
find that the entropic and correlation asymmetries 
discussed above remain in this limit, a consequence 
of the temperature dependence of the coexistence 
surface in thermodynamic-field space. 

The singularity in the diameter of an asymmetric 
coexistence curve can clearly be seen in fig. la as the 
cusp where the diameter meets its mathematical con- 
tinuation into the one-phase region. Our investigations 
show that the magnitude of the diameter anomaly in- 
creases with the vacancy concentration. It thus appears 
that a binary mixture whose critical solution temper- 
ature is very near the liquid-vapor transition is likely 

*’ The thermodynamic properties of the three-dimensional 
king model were computed using the Pade approxhnants 
ref. [13]. 
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to display a large anomaly, and we conjecture that it 
is the small compressibility of most binary liquid mix- 

tures which has limited the observability of the singu- 
larity. The results also suggest that the phase diagrams 
typical of hydrogen-bonded systems, in which there 
are large energetic asymmetries associated with hy- 
drogen bonding and van der Waals interactions, may 

be better candidates for observation of the singularity 
than many of the systems studied to date. In addition, 
the strong pressure dependence of the miscibility curve 
in such systems suggests the important role of vacan- 
cies. Calculations of the observability of the singular- 
ity in various types of binary mixtures will be re- 
ported elsewhere, along with a full exposition of the 

model. 
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