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Dynamics of labyrinthine pattern formation in magnetic fluids
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A theory is developed for the dynamics of pattern formation in quasi-two-dimensional domains of
magnetic fluids (ferrofluids) in transverse magnetic fields. The pattern formation is treated as a dissipa-
tive dynamical process, with the motion derived variationally from a static energy functional using
minimal assumptions. This dynamics is one instance of a general formalism applicable to any system
that can be modeled as a closed curve in a plane. In applying the formalism to ferrofluids, we present a
calculation of the energy of a two-dimensional dipolar domain as a functional of the shape of its bound-
ary. A detailed linear stability analysis of nearly circular shapes is presented, and pattern formation in
the nonlinear regime, far from the onset of instability, is studied by numerical solution of the nonlinear,
nonlocal evolution equations. The highly branched patterns obtained numerically bear a qualitative
resemblance to those found experimentally. The time evolution exhibits sensitive dependence on initial
conditions, suggesting the existence of many local minima in the space of accessible shapes. The analysis
also provides a deterministic starting point for a theory of pattern formation in dipolar monolayers at
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the air-water interface, in which thermal fluctuations play a more dominant role.

PACS number(s): 68.10.—m, 68.70.+w, 75.70.Kw, 77.80.Dj

I. INTRODUCTION

Remarkable labyrinthine patterns are formed when a
droplet of ferrofluid (a colloidal suspension of magnetic
particles) is trapped between two horizontal glass plates
in a vertical magnetic field [1]. These patterns, shown in
Fig. 1, bear a strong resemblance to those found in solid-
like monolayer domains of dipolar amphiphiles at the
air-water interface [2-4]. This similarity reflects the
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FIG. 1. Formation of branched ferrofluid patterns, from Ref.
[12]. An initially circular droplet of ferrofluid in a Hele-Shaw
cell (topmost figure in each column) is subjected to a perpendic-
ular magnetic field. Time increases downward, the entire evolu-
tion taking approximately 30 sec. Columns (i)-(iii) are evolu-
tions at low field (52 G), (iv)—(vi) at a higher field (63 G). The
radius of the circular initial shape is 1.1 cm. Note the high de-
gree of variability of the patterns starting from ostensibly identi-
cal conditions. For examples of fully developed labyrinths in
various dipolar systems, see [1] and [3].

common nature of the energetics of the two systems.
Both are planar dipolar regions, with the dipoles perpen-
dicularly aligned to the plane. Both are controlled by
bulk dipole forces and line tension, and their motion is
strongly overdamped. Viewed as pattern-forming sys-
tems, the only relevant degree of freedom in each is the
shape of the boundary of the region, and as the pattern
evolves this boundary is constrained by mass conserva-
tion to enclose a fixed area. An important distinction be-
tween the dynamics of these two systems is the impor-
tance of Brownian motion. The macroscopic magnetic
fluid patterns obey an essentially deterministic dynamics,
whereas the monolayer domains are on the scale of tens
of micrometers, so that a full treatment of their dynamics
would include a stochastic description of their large
thermal fluctuations.

Other than aspects of the linear stability analysis of
simple geometries [5,6], little is known theoretically
about these complex shapes. Do the labyrinthine pat-
terns actually minimize the energy of the electromagnetic
and surface interactions, or are they the result of compli-
cated hydrodynamic effects [7]? If the former, are the
patterns unique ground states, or, like glasses, only local
minima in a tortuous energy landscape?

In this paper, we address these questions by developing
a formalism for the description of the dissipative motion
of closed curves, conserving area, and derived variation-
ally from a general energy functional. In this perhaps
simplest possible dynamics for a boundary, the hydro-
dynamics of the surrounding medium is ignored except to
the extent that it provides dissipation. The formalism
thus resembles the time-dependent Ginzburg-Landau
model familiar from the dynamics of phase transitions
[8]. To apply the method to ferrofluids and monolayers,
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in Sec. II we express the bulk dipolar energy of a finite
domain as a functional of its boundary, a closed curve [9].
Through the formalism developed in Sec. III we arrive at
a nonlinear nonlocal partial differential equation for the
boundary’s evolution. As a first step towards understand-
ing the pattern formation in the dipolar systems, in Sec.
IV we use the model to study the time evolution of a sin-
gle domain prepared in an unstable state. Such a situa-
tion arises experimentally when the field on a ferrofluid
[12] or the temperature or pressure of an amphiphilic film
is suddenly changed [4]. A natural starting point for
such a study is the linear stability analysis for a circular
droplet. Computing the growth rates of small harmonic
perturbations allows us to find the most unstable wave-
length as a function of the control parameters. While in
many pattern-forming systems (e.g., the Rayleigh-Bénard
[10] and Mullins-Sekerka [11] problems) the most unsta-
ble wavelength is close to the spatial scale of the observed
pattern in the nonlinear regime, this does not appear to
be the case here, as we demonstrate with numerical stud-
ies far away from the region of validity of the linear
analysis. The linear analysis does, however, reveal the
essential physics of the instability: a competition be-
tween, on the one hand, fringe-field effects leading to a
negative contribution to the line tension, and, on the oth-
er hand, long-range interactions between different parts
of the boundary. It also provides a rough estimate of the
number of arms of the labyrinth.

Our results may be summarized by the time-evolution
sequences shown in Fig. 2, obtained from the nonlinear
numerical calculations. These patterns display many of
the features seen in experiment, including the qualitative
features of the branching and the well-defined arm width.
On a more conceptual level, these results suggest that in
these systems a complex “energy landscape” can arise
from simple rules involving only constraints and long-
range forces. Consistent with this picture, the detailed
final states of the pattern evolution display sensitive
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FIG. 2. Theoretical pattern evolutions for a dipolar domain,
obtained from the numerical solution of the dynamical equa-
tions. Time increases downwards. Each column has microscop-
ically different initial conditions, but (a) and (b) have the same
control parameters (Ng,=1.01,p=20.0) as do (c)-(P
(N, =0.54,p =200.) See text for definition of Ny, and p.
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dependence on initial conditions, a phenomenon seen in
experiment [12].

II. ENERGETICS OF DIPOLAR DOMAINS

The energy of a dipolar domain is taken to be the sum
of electrostatic (or magnetostatic) and surface energies.
We are considering domains of fixed area, so the relevant
surface energy is due to the line tension y around the
boundary of the domain. In other words, the energy is

Eo=yL+6,, @.1)

where L is the length of boundary, and 6 is the dipolar
energy, calculated as follows.

Consider a slab of thickness 4 in the Z direction and
with a uniform cross section described by an arbitrary
simple closed curve @ in the xy plane (see Fig. 3). If this
region is filled with a uniform density of dipoles oriented
in the Z direction, then the field due to the dipoles is
equivalent to that of two planar sheets of equal and oppo-
site charge density o, bounded by @, and separated by A.
Following Keller, Korb, and McConnell [13], we write
the total field as E=E,+E,, where Ey(x,y,z) is a uni-
form field E,Z between the sheets [i.e., for 0<z <h and
(x,y) within @] and vanishes elsewhere. The corrections
(not necessarily small) due to fringing are all contained in
E,. Setting E,=4mo means that, by Gauss’ law, E, is
divergenceless. For convenience, we take E, rather than
o, to be the independent variable. In the magnetostatic
problem, E, /4w corresponds to the magnetization M, of
the ferrofluid.

Because E, is divergenceless, we can define a vector po-
tential A such that E;=V X A. With V- A=0, and ob-
serving that VXE,=—VXE, is nonzero only on the
ribbon-shaped boundary of the slab, we find

mn——Jdﬁd'

where x is any point is space, s’ is an arclength coordi-

1(s’)

|x—r(s’,z")| ’ 22)

| Ho

FIG. 3. Schematic illustration of the slab geometry of a
ferrofluid experiment, with definitions of the geometric quanti-
ties describing the curve €.
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nate along the contour @, r(s’,z’) is a point on the rib-
bon, and t(s’) is the unit counterclockwise tangent to €
at s’. A isidentical to the vector potential produced by a
ribbon of current flowing around the boundary of the
slab, with a density Eyc /4 per unit height.

The field energy is

1
5f=§;r-fd3r(‘E0|2+2E0'E1+|E1’2) . (2.3)

The first term, arising from the uniform field, is simply
proportional to the volume of the slab. The cross term is
nonzero only within the slab. Using Eq. (2.2) and Stokes’
law, we can reduce this term to a double integral over the
ribbon bounding the slab:

2 AR,
2 [d*rEyE,= —%1 i fohdz dz' Pds Pds’ !rt;"”

(2.4)

Here the primed and unprimed variables indicate quanti-
ties evaluated at the primed and unprimed coordinates
(s',z") and (s,z). Note that this term is negative,
reflecting the fact that the fringe field E, opposes the bulk
field E, at the boundary. Later we shall see that this has
the effect of decreasing the effective line tension of the
boundary, thus favoring an increase in the perimeter.

The last term in (2.3) is simplified by noting that,
by the divergence theorem [14], fd3r|E1 |2
= [d’r(VX A)-E,= [d’r A«(VXE,), which finally
reduces to an integral over the ribbon. In the end, this
term is exactly — 1 of the cross term (2.4).

Writing |[r—r'|=VR?>+(z—z')?>, where R=|R]
=|r(s’)—rx(s)| is the in-plane distance between points at
positions s and s’ on @, lets us perform the integrals over
z and z’ analytically, and we can express the full field en-
ergy as a functional of a self-interacting closed curve in
the plane:

hEO

6,= A——ﬁdsgsds TR /h) |, (2.5)

with

®(&)=sinh 1(1/6)+E—V1+E%. (2.6)

Figure 4 illustrates that for £>>1, the function ® is
essentially Coulombic (®=~1/2§), whereas for £=1 it is
less singular, varying as In(2/£). This crossover to loga-
rithmic behavior occurs because of the finite thickness
of the slab, and prevents the integrals from diverging.
Earlier studies [13,15,16], in which the integrals over z
and z' in Eq. (2.4) were absent, required an additional
small scale cutoff. We stress that the result (2.5) is an ex-
act representation of the field energy, within the approxi-
mation of a uniform dipolar density. By taking the limit
h—0 in (2.5), one can recover the expression in [13], but
only for the range where R >>h in the integrand.
Defining a dipole moment density u=och (per unit
area), we have Ej =4mu/h. Written this way, the
correspondence with magnetic systems is simply o — M,
or u—Myh, where M, is the assumed uniform magneti-
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FIG. 4. Scalar potential ® in Eq. (2.6) (solid line) compared
with the Coulomb potential (dashed line).

zation. Rescaling all lengths by the height A, we see that
the full energy (2.1) is determined by one dimensionless
parameter, the “‘magnetic Bond number” [1]

E3®  2M¥?
87727/ Y
and by the shape of the dipolar region. Because the en-

closed area A will be unchanged by the dynamics, a con-
venient measure of the shape is the scaled aspect ratio

p=2R,/h , (2.8)

2.7

I

Nbo

where R, =V A /m is the radius of the equivalent circle.

The importance of the logarithmic dependence of the
pair potential ® on the slab height can be seen through a
computation of the energy of a circular disk, a result ap-
parently first found by Lorenz [17]. An exercise in the
manipulation of elliptic integrals yields

E} E}

6= —ﬂh+—Ro{l k

i “3[(2k*—1)E(k)

+(1—kHK(K)]} . 2.9

where K and E are, respectively, complete elliptic in-
tegrals of the first and second kind, and

LI iy

1+p2
If we now consider the limit # —0 while keeping the di-
pole density u=FEyh fixed, the excess field energy
diverges as

(2.10)

& Eéﬂ ~— 2R N ﬁ
A O L Y
2
h h
+0 | |2 || ,
O R, n R, ’

illustrating the role of the height A as a cutoff.
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III. DYNAMICS

A. A variational principle

Having reduced the energy of the dipolar domain to a
functional of the curve @, we now address the general
problem of the motion of a closed curve in a plane. We
will adopt the simplest possible dynamics, requiring no
ingredients beyond those contained in the energy func-
tional and the assumption of dissipation. We seek equa-
tions of motion for the curve that will always decrease its
energy.

Let r(a,t) be a closed curve, where a €[0, 1] is an arbi-
trary parametrization. It will often be convenient (as in
the above discussion of the energy) to use the arclength
parametrization s(a) of the curve, with differential
ds=V'g da, where g =|3r/da/|? is the metric. If @i is the
outward unit normal to the curve at a, and T(a)=9r/ds
is the unit counterclockwise tangent, then 9fi/0ds =ik,
and dt/9s = —«f, where « is the curvature, defined to be
positive for a circle.

The equations of motion are derived from an action
principle using Lagrange’s formalism for dissipative pro-
cesses [18,19]. This method guarantees that the resulting
equations have the appropriate reparametrization invari-
ance. The generalized coordinates g, are the positions of
the points r(a) on the curve. The potential energy is sim-
ply the energy functional &[r]. In general, the equations
of motion are

daL L _ 8%
dt 3¢, 94, 34,

where ¥, is the Rayleigh dissipation function, propor-
tional to the rate at which energy is dissipated by the
viscous forces.

For the typical viscous forces linear in the velocity, ¥,
is quadratic in dr/d¢t. Making a local approximation, we
write [20]

, (3.1)

2

E7d=%nf01da\/§ %—G(a,tﬁ , (3.2)

where 7) is a friction coefficient. Since the motion must
be invariant under arbitrary time-dependent reparametri-
zations, we need the “gauge function” O(a,t) to ensure
that the reparametrizations do not contribute to the dissi-
pation. Under the transformation a—a’(a,t), the veloc-
ity transforms as dr/d¢ —dr /0t +(dr/da’)(da’ /9t ), and
the dissipation function is unchanged if we let
6—->06+Vgda'/ot.

In the viscous limit we neglect the kinetic-energy terms
in (3.1), setting L =—¢&. Then, recognizing that deriva-
tives with respect to the coordinate g, are functional
derivatives with respect to r, we obtain the equation of
motion

r__ 186, o

(3.3)

The friction coefficient 7 has been absorbed by rescaling
time. The gauge function © appears as an additional
tangential velocity, showing that it is indeed a
reparametrization of the curve. Equation (3.3) has the
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appearance of the time-dependent Ginzburg-Landau
equation for a nonconserved order parameter [8], and is
also a generalized version of the Rouse model of polymer
dynamics [21].

B. Kinematic constraints

Conservation of enclosed area is achieved through the
introduction of a time-dependent pressure, II, as a
Lagrange multiplier in an augmented energy functional

E=6,—TIA . (3.4)

6, is the energy of the unconstrained system. To deter-
mine II, we first define the normal and tangential veloci-
ties of a point on the curve:

O Yiah+Wiak .
ot
We define two functions U, and W, to be the forces that

are derived from & alone,

(3.5)

——=—=Upla,t i+ Wyla,t) . (3.6)
Functional differentiation of the augmented free energy
(3.4), with A=(1/2)Pds rXt [22], yields dynamics in
the form of (3.5) with

U(s)=Uy+II and W(s)=W,+0O . (3.7

rea conservation applied globally, dA /3t =0, requires
ds U(s)=0. Thus II is determined nonlocally at each
instant of time to be
n=—L1déau,. (3.8)
L
It is worth remarking that although we assume that the
dissipation function is local, the global area conservation

constraint would introduce nonlocality into the dynamics
even if the bare energy functional &, were local.

C. Local arclength gauge and shape evolution

The constraint of fixed area manifests itself in the form
of the normal velocity U, but leaves free the tangential
velocity W, or equivalently, the reparametrization © in
Eq. (3.7). We appeal to reparametrization invariance to
choose a convenient tangential velocity W. For systems
with conserved total arclength the natural choice would
be one which preserves the meaning of arclength s by
conserving the local arclength, i.e., the metric V'g. When
the total arclength is not constant, a useful choice is still
that which maintains uniform spacing of points on the
curve, the relative arclength gauge. The condition
(38/9t)(s /L )=0 then requires that

W(s)=— $ds'xU~ [ ds'cu . (3.9)

For numerical work, rather than evolving a set of vec-
tors {r(a)}, it is often convenient instead to follow the
tangent angles {O(a)} or the curvatures {«(a)}. These
obey the equations [23]
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9 __9au ing from the point s towards s’, and R =|R] is the dis-

ot Ola,t) ds W (3.10) tance between points s and s’. The tangential force W(s)

and vanishes. The first term in (4.1) is the usual Laplace pres-
sure due to the curvature of the interface. The second

F) _ 92 5 K term, at large R, reduces to the Biot-Savart force due to a
E"(a’”- - ?'*‘K U'*'ES‘W : (3.11) wire carrying an effective current I =Eyhc /47 around

D. Example: Motion driven by line tension

To illustrate the formalism, we now discuss perhaps
the simplest nontrivial example: a curve driven by line
tension ¥ alone. The energy functional 6,=yL is clearly
minimized by shapes having the smallest possible perime-
ter consistent with the prescribed area, i.e., circles. The
normal force is

Uyls)=—vyk (3.12)

while the tangential force W, vanishes. Because
ds k=2m for a simple closed curve, Eq. (3.8) implies
that the Lagrange multiplier is

n=27, (3.13)

L

It follows that the final dynamics can be reduced to two
coupled differential equations for the total length L (z),

2
LOL_ 0P Gy

3.14
y ot L ( :
and for the curvature,
2
1 ols,t) 9k | 5 27 o
Y ot 9s2 L
| s | (2m)? 2
+— | —Qds’
ds | L L ¢ s
— 2—Trfsds'lc—fsds’x2
L Yo 0
(3.15)
Apart from the nonlocality associated with the

reparametrizations, the dynamics in (3.15) is an area-
conserving version of the well-studied “curve-shortening
equation” [24]. A fixed point of these coupled equations
is the circle k=1/R, and L =27R,, where 7R} is the
area of the initial shape. The dynamics given by (3.14)
and (3.15) will be discussed further in the next section as
a description of shape relaxation of a labyrinthine pattern
after the removal of the applied magnetic field.

IV. DYNAMICS OF DIPOLAR DOMAINS

A. Formulation

From the functional derivative of the full energy (2.1)
and Eq. (3.6) we find the normal force at a point s on the
boundary of a dipolar domain to be

E2 A A P EE——
Uyls)= —yx+§—%9$ds'k><t'[\/1+(h /RZ—1], (4.1)
v

where R=r(s’)—r(s), R=R/R is the unit vector point-

the boundary. The deviation from the Biot-Savart form
at small R results from the finite thickness of the effective
wire, i.e., the height of the slab. Equation (4.1), together
with (3.5) through (3.9), completely specifies the motion
of the boundary. Note that the first term in the dipole
energy (2.5) is proportional to the (conserved) slab
volume, and does not contribute to the dynamics.

B. Linear stability analysis

When faced with complicated nonlinear dynamics
problems, a fruitful approach is often to consider the
linearized dynamics near a simple initial condition. For
the ferrofluid, this analysis yields the critical magnetic
field at which a circular droplet becomes unstable, and,
given the field, the wavelength of the instability [25]. Be-
cause of the importance of nonlinearities in the dynamics
and the finite width of the band of unstable modes, the
wavelength of the initial instability does not necessarily
uniquely determine the number of arms in the final la-
byrinth, although there is a strong correlation.

Consider small deviations § in the radius of a circle,
parametrized by the polar angle ¢:

r(@)=[Ry+&(@, )6, (@) .

It follows from the general dissipative equation of motion
for the boundary of the system,

%=(U0+n)ﬁ+e?,

that the perturbation { will evolve according to the
linearization of the normal velocity of the circle:

9
ot

(4.2)

(4.3)

(@, 0)=Uy{[Ry+&(@,1)1€,} —Uy(RyE,) . (4.4)
The deviation of the pressure Il from its unperturbed
value is quadratic in § and thus does not appear in the
stability analysis. Tangential velocities also play no role
at linear order, so we may choose the gauge function
0=0.

If we now suppose that the perturbation is of the form
(@, t)~explo,t)cosng, then by straightforward but
lengthy algebra (see the Appendix) we find that the
growth rate o, of mode n is given by

R} R
7 0,=(1—=n*)+Np,D,(p), (4.5)
where
2 n
_p° 2 " /2 cosZna)d
D,(p)=5 j§12j—1 fo L——A(w) ©
—2+k T 2E(k)+(k*—2)K(K)] | . (4.6)
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The parameters p and k are given by (2.8) and (2.10), and

we have defined A(w)=V1+pXin*(w).

Note that o, vanishes identically for all Ny, since a
perturbation of the form §,cos(¢) simply translates the
curve rigidly, and the field and line tension contributions
to the energy are of course invariant to such changes.

Figure 5 illustrates the behavior of the growth rate as
the Bond number Ny, is changed at fixed aspect ratio. In
general, the n =2 mode is the first to become unstable.
The boundary of limiting stability in the p — Ny, plane
may be computed analytically from (4.5) and (4.6) (see the
Appendix and Ref. [6]). This boundary is shown in Fig.
6, along with the lines along which each of the other
modes n is at the maximum of o,. These lines thus
define approximately the centers of the band in the
p —Np, plane within which a given mode dominates all
others. We see, as remarked in earlier studies [13,16],
that a circular drop may become unstable either by in-
creasing the Bond number (increasing dipolar strength or
reducing surface tension) or by growing larger (increasing
p). Figure 6 is in some sense a putative “phase diagram”
for the system —if nonlinearities were unimportant, one
could predict from it the number of arms in a labyrinth
given the bond number and aspect ratio. Note, however,
that the width of the band of unstable modes becomes
large quite rapidly with increasing bond number. Intui-
tively this would suggest the possibility of strong mode
competition, and, indeed, as we will see below, as the la-
byrinth evolves it quickly leaves the domain of applicabil-
ity of the linear stability analysis. At a fixed value of p,
the most unstable mode is a rapidly increasing function of
bond number, as shown in Fig. 7. The steplike behavior
is due to the quantization of wavelengths around the cir-
cle.

In many experiments on magnetic fluid and dipole
monolayer pattern formation the aspect ratio p is very
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FIG. 5. Growth rate as a function of mode number in the
linear stability analysis, for p =20 and three values of the mag-
netic Bond number.
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FIG. 6. Diagram illustrating dominant modes for instabilities
of circular magnetic fluid domains. Bond number at which vari-
ous modes have maximum growth rate, as a function of the as-
pect ratio p=2R,/h. Equation (A11) was used to plot the line
of initial instability (where the n =2 mode acquires a positive
growth rate). The remaining curves were found by numerical
solution of Egs. (4.5) and (4.6) for extremal growth rates.

large, with values of 20-100 being easily obtained for
magnetic fluids, and of 10°-~10* for monolayers. One ex-
pects that the stability analysis should simplify consider-
ably in this limit; indeed, the systematic expansion de-
scribed in the Appendix yields the leading terms in the
growth rate for large p and n /p << 1:

FIG. 7. Most unstable mode as a function of Bond number,
for p=20.0. Stepped curve is from the exact linear stability
analysis, illustrating the geometric locking due to the finite per-
imeter of the circle. Solid line is from the approximation (4.9).
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—1_,2
o,=1—n

ﬁ‘”
oN

+ LN, {(n?=1)[1+Inp—C]—n’lnn} .
@4.7)

C=0.577215 is Euler’s constant. We see that the mag-
netic interactions have two effects: (i) Terms in (1—n2) in
(4.7) act like the line tension, so we find an effective line
tension ¥ ¢ in the presence of the magnetic field which is
less than the bare tension, and can even be negative:

Yer=v[1—3(1+Inp —C)Nyg, ] ; (4.8)

(ii) the long-range magnetic forces between the parts of
the interface introduce a logarithmic dependence on n
(see the Appendix for details). For n/p <1 this interac-
tion is repulsive, destabilizing the circle.

A heuristic criterion for the onset of an instability
might be developed simply by setting y.z=0. From (4.8),
this implies a critical value of the Bond number
Ng,=2/(1+1np —C), which is close to the instability
line of the n =2 mode.

We deduce from (4.7) that the most unstable mode n*
has an extremely strong (and nonanalytic) dependence on
the magnetic bond number,

e 2
YE

*= (4.9)

n exp(—2/Ng,) ,

as does the maximum » for which the growth rate is posi-
tive; i.e., the width of the band of unstable modes. Recast
in terms of the most unstable wavelength, A*, we see the
simple result that for large droplets A* is independent of
the unperturbed radius R,

TV E
el/2

At =

h exp(2/Ng,) , (4.10)

as one would expect. As Fig. 7 illustrates, the large-p ap-
proximation to n* is in reasonable qualitative and quanti-
tative agreement with the exact result, particularly for
n/p<<l.

C. Observed features in the nonlinear regime

Computational limitations restrict our studies to the
early stages of labyrinth formation. We cannot repro-
duce numerically the highly convoluted labyrinths of
Refs. [1] and [3]. However, the early labyrinth, with
fewer than a dozen arms, is easily accessible, and is
sufficient to indicate the mechanism of pattern formation.
Figure 8 illustrates some numerical solutions of the dipo-
lar dynamics for various values of the Bond number and
aspect ratio. The dynamics reproduces several experi-
mental features. The initially circular droplet evolves
into a many-armed structure, with the number of arms
increasing with the dipole density. The arms bend and
branch, and have roughly constant width and bulbous
ends. The droplets are not seen to break up. Note that
while the mode number of the initial instability is in ac-
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FIG. 8. Calculated time evolution for various values of the
field-surface energy ratio Ny, and initial aspect ratio p. The ini-
tial states are the nearly circular droplets at the left. Selected
successive shapes are displaced horizontally for clarity. For
each of the four conditions, the magnetic Bond number (Ng,),
aspect ratio (p), and the most unstable mode number (n*) from
the linear stability analysis, are (a) Ny, =0.54, p=100, n*=2;
(b) ngo,=1.27, p=20, n*=4; (c) Ny, =0.54, p=200, n*=5; (d)
Np,=1.99, p=20, n*=8. The initial configurations for (a)—(d)
are slightly noisy circles. The initial configuration for (d) has
twofold symmetry, which is broken by roundoff error, illustrat-
ing the sensitivity to initial conditions.

cord with the fastest growing mode n*, obtained from
the linear stability analysis (as summarized in the figure
caption), subsequent branchings and mode competition
result in a final number of arms which can differ from n *.
Moreover, as is apparent from the complex shapes, the
actual length scales involved in the pattern have little to
do with the wavelength of the initial instability, particu-
larly since the total length is not conserved.

The bulbous ends of the labyrinthine branches have a
simple explanation. The fluid repels itself, and therefore
distributes itself along the labyrinthine arms to maximize
the average distance between dipoles (within the res-
traints imposed by surface tension and area conserva-
tion). Therefore the fluid accumulates at the ends of the
arms.

The roughly constant arm width can also be under-
stood in terms of statics. The force (4.1) at the edge of a
straight arm is dominated by the Biot-Savart force from
the opposite side of the arm. This force is outward, and
decreases with the arm width. It is countered by the
pressure Il induced by area conservation. This pressure
is insensitive to small local changes in the arm width
(since it is an average of U, over the whole system). The
width which leads to zero net force on a straight arm
will not depend strongly on other details of the structure,
and should therefore be roughly constant over the whole
labyrinth.

As shown in Fig. 2, at fixed values of p and Ny, nearly
indistinguishable initial conditions lead to quite different
labyrinthine structures. (The initial shapes used in most
of the calculations shown here were created by adding
random amplitudes, uniformly distributed between
—0.01 and 0.01, to the 16th through 32nd Fourier modes
of the curvature spectrum of a unit circle.) This sensitivi-
ty to initial conditions is the result of the effective nega-
tive line tension arising from the short-range part of the
dipole force. Consider for the moment a system driven
by only line tension and area conservation. If the tension
is positive, all initial shapes relax to a circle (via the
aforementioned curve-shortening equation). Because the
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dynamics is first order in time, the model with negative
line tension is the time reverse of the model with positive
tension. Since all paths in shape space converge if the
tension is positive, they must diverge when the tension is
negative, implying sensitive dependence on initial condi-
tions. This in turn explains the branching in the experi-
ments and calculations—small bumps on the boundary
of the droplet will grow into bigger bumps, which devel-
op into full-fledged arms.

The negative effective line tension arises from the op-
position of the fringe field E, to the bulk field E, near the
boundary of the diplar region. When the resulting reduc-
tion in the local field energy density compensates for the
line tension, it becomes favorable for the system to in-
crease its perimeter. However, because the field energy is
not really local, we cannot compute the effective tension
exactly. That is, we would like to be able to separate the
force integral (4.1) uniquely into long- and short-range
parts. The integral could be a sum of two terms, Uj,,,
and Ug,, with

E} ~ o
Uson$)= 3 [ © ds RXATVTFG/RI=1], 41D
T —€

where € is some suitable cutoff. If ex(s) is small, then we
can approximate the curve in the regime s —e<s'<s-+e¢
by a circular arc with curvature (s). In this case R ~|s|
and R X%'=«|s|/2. Performing the integration, we find
that Uy, <k and therefore acts like a line tension. The
effective total tension ¥ is ¥ — U, /K, OF

Ej

1672

¥ /v is a function of the bond number Ny, and the ratio
€/h. As in the linear stability analysis in Sec. IV B, we
have found that the effective tension can be negative, giv-
ing rise to sensitive dependence on initial conditions. Un-
like the linear analysis, Eq. (4.12) applies to all shapes.
Unfortunately, it does not reduce to an e-independent
quantity in any limit, making the definition of ¥ some-
what indeterminate. (The correct choice of the cutoff €
may depend on the local geometry, which would lead to a
position-dependent effective tension. This would not in-
validate any of our conclusions.) For numerical work,
where the curve must be discretized, the approximation
(4.12) is used with € set to the distance between points on
the curve. Without this approximation, an inordinate
number of points on the curve would be needed to calcu-
late the integral (4.1) correctly, due to the sharp peak in
the integrand at s =s’.

At first sight, it is surprising that the initial droplets
are not seen to break up into smaller droplets. One
would suppose that the true ground state of the system
should consist of a number of small droplets, widely
spaced to minimize their dipolar interactions, and of a
size that minimizes the sum of their dipolar self-energies
and surface tension. This is not observed either in the ex-
periments or the numerical dynamics. Vanderlick and
Mohwald [16], using a slightly different energy function-
al, have shown that along certain paths through the space
of shapes [namely, the sequences of harmonic shapes

[eV'e*+h*—e*+h%inh~(e/h)] .

Y=v— (4.12)
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r(0)=R,11Lesn0) 4 () 4.13)

Vi+9%/2
parametrized by an amplitude 17 and a mode number n]
there is a barrier to fission. In other words, the energy
functional increases as 7 in (4.13) goes to unity. For our
energy functional we find much the same behavior, ex-
cept that for some values of the parameters some modes
are unstable to fission. For example, Fig. 9 shows the to-
tal energy as a function of amplitude 1 for a number of
modes. The lowest modes are unstable to fission, but be-
cause these are not the most unstable modes of the initial
circle, the initial circle (with 7=0) will not move towards
the (n=2,7=1) separated shape, but rather towards a
metastable (n>2,7<1) simply connected shape. Al-
though this discussion has been restricted to the unphysi-
cal set of shapes given by (4.13), it underscores the neces-
sity of considering dynamics, rather than statics, in
describing the labyrinths.

Finally, the relaxation of a branched pattern back to a
circle upon the removal of the magnetic field is another
important feature seen in experiment [1,12]. Within the
present formalism it is described by the curve-shortening
dynamics with conserved area, Egs. (3.14) and (3.15).
Since, in the absence of an applied field, the bare energy
functional is simply proportional to the length, the dissi-
pative dynamics will drive the length downward in time
monotonically until a circular shape is reached. This is
illustrated in Fig. 10, for the case of the final state shown
in Fig. 2(b). It should be remarked that in experiments
one finds that a highly branched pattern will break up
into a number of small drops if the magnetic field is sud-
denly removed. Such topological changes are not con-
tained in our model.
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FIG. 9. Energy of the set of variational shapes given by Eq.
(4.13), with Ng,=1.19 and p =200, as a function of the ampli-
tude 7 for various modes n. The energies are normalized to the
energy 6, of a circle. Modes 2 through 10 are unstable to
fission, but will not be attained by the dynamics, which starts at
7=0 and selects mode 35. The global minimum energy is actu-
ally 6/6,=0.91, obtained for n =104 widely dispersed drop-
lets.
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FIG. 10. Relaxation driven by surface tension alone, starting
from the final state of Fig. 2(b). The perimeter is also shown as
a function of time, demonstrating the monotonicity of the relax-
ational dynamics.

V. DISCUSSION

The viscous variational dynamics we describe simply
moves the system from one configuration to the most en-
ergetically favorable neighboring configuration. Treating
the system in this way allows us to find the accessible la-
byrinthine configurations. If we had instead searched for
true equilibrium states (by solving the functional equa-
tion U[r(a)]=0) we would certainly have found kineti-
cally inaccessible configurations—if indeed we had
found a solution at all. The success of this simple dynam-
ics in reproducing the observed labyrinths suggests that
the pattern formation may be due solely to the structure
of the energy functional, and not to complicated hydro-
dynamic effects. The energy functional has many local
metastable minima, corresponding to the many observed
labyrinthine patterns, and (perhaps) an inaccessible global
minimum. In this sense labyrinth formation is akin to
freezing in glasses. It is a dynamic process, because the
time evolution cannot be ignored, but it is governed by
statics, because the only necessary physical ingredient is
the (static) potential-energy functional.

An important unresolved issue is the best means of
characterizing the labyrinthine shapes. In particular, it is
clear from examination of Figs. 1 and 2 that labyrinths
formed in identical environments from nearby initial con-
ditions are similar in certain ‘“‘coarse-grained” features,
such as perimeter and radius of gyration, while still
differing in detail. Indeed, the perimeter and radius of
gyration exhibit well-defined trends with magnetic field
[12]. A quantitative characterization would include some
measure of the sensitivity to initial conditions, via a
Lyapunov exponent, which would require a suitable
definition of the distance between two shapes in
configuration space.

As remarked in the Introduction, the purely deter-
ministic motions considered here are directly relevant to
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macroscopic pattern formation in magnetic fluids. The
dynamics of the analogous amphiphilic systems should
include thermal fluctuations; the present approach may
be viewed as its zero-temperature limit. On a more gen-
eral level, the related problems of pattern formation and
thermal fluctuations of shapes have been studied by other
approaches, such a Monte Carlo and molecular-dynamics
techniques [26]. The dissipative dynamics used here pro-
vides a complementary method for studying such shape
evolutions, and can be applied to models of vesicles, bio-
logical cells, and polymers [27]. Generalizations to the
dynamics of space curves and to two-dimensional sur-
faces embedded in three dimensions are planned to be
considered elsewhere.
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APPENDIX: DETAILS
OF THE LINEAR STABILITY ANALYSIS

Here we provide some intermediate steps in the deriva-
tion of the linear stability relation (4.5). For a linearly
perturbed circle, we obtain by straightforward expansions
in § yield the linearized versions of the various terms in
U,, among them the line element

ds=dp(Ry+§), (A1)
curvature
1 1 ¢
~——— [&(@)+ , (A2)
K Ro R% g ¢ a(pz
scalar distance
. | o 1+&(p)+E(g')
~ “ A3
R =~2R |sin ZH 2R, }, (A3)
cross product
ﬁx?,:_____lcsc(w/Z)l §(¢>’)——§(¢J)cosw+—§——‘£*a ( - )sina)
2R, d¢

>

+[2R,—&(@)—E(@") IsinX(w /2)

(A4)
and potential function
———— Aw/2) @) +Elg)
V1+(h/R)= 1— , (AS)
(h/R) plsin(w/2)] 2R A w/2)
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where w=¢—¢' and A(w)=V'1+pZ%in¥(w) and p is
defined in (2.8).

Putting this all together, and considering a single exci-
tation of mode number n [i.e., £(@,1)=E,(t)cos(n)], we
may write the growth rate in the form of (4.5) with

D,(p)=p [ do(a—psino—1/4)

+p* [ do S‘s’l‘;’;“’ 2 Si’:\z”“’ (A6)
Consider the terms in (A6) individually, writing
D,(p)=p*M,—pL,(p)]+N(p), (A7)
where
[, L= [
(A8)

and N (p) is independent of n. The first integral is known
(Ref. [28], No. 2.539.4)

i1
M,=3 :
=2k —1

(A9)

This leaves us with L,, which is a nontrivial integral.
Thiele [5] studied this function and was able to arrive at a
systematic expansion in terms of the small parameter
x=1/p2. Unfortunately, the coefficients in the expan-
sion are very tedious to calculate for anything but the
first two terms.

We will later use an asymptotic approximation which
will prove to be very accurate. We first write

m/2 1 m/2 2
Lp)=t [ Fdo—1 [T do

and combine the first integral with N (p), which becomes

(A10)

N(p) pf”/ A psmw—K—% do

22, _p> [m/2pcosw
pfo sino dw 2f0 A dw

=—p*1—k [E+LKk*-2)K]},

where K and E are complete elliptic integrals of argu-
ment k. Combining these results, we obtain the exact
final form given in (4.6).

For the special case n =2 the integral may be per-
formed analytically by means of the transformation rules
for elliptic integrals [28], yielding the critical bond num-
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ber as a function of the aspect ratio p,
NE =9k(1—k»){k*+(1—k*)(8—3kHK (k)
+(7k2—8)E(k)}~ (A11)

To study the limit of large aspect ratios, we consider
values of the mode number n which are small compared
to p, or, equivalently, wavelengths large compared to the
slab thickness, since n/p=wh/A,. The finite sum in
(4.6) can be approximated as (Ref. [28], No. 0.132)

i 1
kz 12k —1

where y ; =e € with C ~0.577 215 being Euler’s constant.

By studying the second integral in (A 10) in the limit of
large p, one may arrive at the approximation in terms of
Bessel functions,

~1ln(4nyg)+0O(1/n?), (A12)

2
D, (p)= ’;—[lnn +Ko(2n/p)—Ky(2/p)] . (A13)
To gain a bit of insight into what this equation means, we
exploit the fact that p is generally large, and we are main-
ly interested in cases where A>h=n <mp. We expand
the Bessel functions and substitute into (A13) to obtain

2—2k
Dyip)= 3 Lot

2(k')2 D[k +1)—In(n/p)]—Inn},

(A14)

where ¥ is the psi function. If we now consider values of
n small enough so that we only need to keep the first term
of the series, then

D,(p)=+{(n*=1[1-C

leading to (4.7).

Terms of the form n%In(n /p) originate in the Coulom-
bic nature of the interactions between segments of the
boundary in the energy functional (2.5). A simplified
heuristic explanation is as follows: For small deviations
from a circle, the interactions between the tangent vec-
tors lead to terms in the energy of the form

,3Lp) ALlg' . ,
[do[dg %@%ﬁ‘%—%{plsxn[@—w 211} . (A16)

—In(n/p)]—Inn} (A15)

When expressed in terms of the Fourier amplitudes f,,
such terms give rise to new terms of the form
> ,n%E, |>*®,, where ®, is the transform of the potential
as glven in (A16). Wlth a cutoff in the Coulombic behav-
ior in @ set by the plate spacing h, we readily obtain
<I> ~1In(n /p) and thus the functional form in (4.7).
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