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We solve in mean-field approximation a model describing the lamellar phases of lyotropic liquid crys-
tals as stacks of interacting bilayer membranes. The model is a synthesis of a Landau-Ginzburg theory
of membrane-melting transitions and a continuum treatment of the molecular forces acting between bi-
layers. The resulting phase diagrams include both planar and modulated phases and are in semiquanti-
tative agreement with experimental observation on neutral lipids. The approach highlights the role of in-
teractions in the thermodynamic behavior of membrane systems.

PACS numbers: 64.70.Md, 61.30.—v, 87.15.—v

Lamellar liquid crystals of hydrated lipid bilayers are
good model systems for the study of interacting mem-
branes. As is the case for isolated membranes (e.g., vesi-
cles), the individual lipid bilayers which constitute the
lamellae may undergo many structural phase transitions
as a function of temperature. In the multilayer systems,
however, such intramembrane phase transitions are often
strongly modified by interlamellar interactions.! An un-
derstanding of this effect appears crucial to the develop-
ment of a realistic theory of interacting and fluctuating
membranes. In this Letter we study an example of a
structural phase transition modified by membrane in-
teractions. We show that a simple synthesis of two
theoretical ingredients, a Landau theory of intramem-
brane melting transitions,? and a well-known continuum
model of molecular forces,’ provides a semiquantitative
account of thermodynamic properties of the lamellar
phases, and may serve as a possible starting point for a
more detailed theory of interacting membranes.

The phase diagrams presented in Figs. 1(a) and 1(b)

are the main results of a mean-field treatment of the
model. They include three of the observed* phases of
lamellar crystals: (i) the fluid, disordered L, phase, (ii)
a solidlike, ordered Lg phase, and (iii) the intermediate
modulated (“rippled”) Ps phase. These diagrams were
computed using typical values of the phenomenological
parameters which enter the theory. They can all be de-
duced from thermodynamic and structural measurments
obtained with existing experimental techniques.'* The
topology and the main characteristics of the diagrams in
Fig. 1 bear a strong resemblance to those found in neu-
tral phospholipids. In particular, the variations of the
Lo-Lg and L,-Pg (“main”) transitions and of the Lg-Ppg
(“pre”) transition with the water volume fraction are in
accord with experimental observations. The theory
thereby shows explicitly the important role played by
water-mediated “hydration” interactions in the physics
of membrane systems.

We proceed now to a brief summary of the model.’
The melting transitions in lipid membranes have been
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FIG. 1. Temperature-composition phase diagrams of multilamellar bilayer membranes, with ¢ the volume fraction of lipid. Inset:
schematic drawings of the thin (L,), modulated (P4), and thick (Ls) phases. EW denotes a phase of nearly pure (“excess”) water.
Vertical scales are those of the bare Landau coefficients (left) and in absolute degrees (right) as deduced from typical values of the
model parameters.
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the subject of numerous experimental studies, particular-
ly in light of their possible biological relevance. Many
experiments reveal that at these transitions the bilayer
thickness & exhibits jump discontinuities.! We therefore
base our continuum theory on a scalar order parameter
w=[6(T) — 801/89, where &y is a reference thickness,
taken here as that of the fluid phase. Scattering studies
of the multilamellar systems,6 freeze-fracture micros-
copy,’ as well as micromechanical experiments® on iso-
lated membranes show that the Py phase is characterized
by a one-dimensional modulation (with a wavelength
A,=10-20 nm). We thus allow the order parameter y
to vary with the position vector x within the membrane.

Folwl =fd2x{%E(Vw)2+ FKV2) 2+ faw?+ fasy’+ faqw?.

Similar Hamiltonians with a scalar order parameter
have been introduced to study modulated phases of iso-
lated membranes.'® The temperature dependence of the
coefficients is assumed to reside solely in a): a=a3(T
—To), with T a reference temperature which is the
critical temperature of a uniform system in the absence
of a cubic term. For a3#0 the model leads to a first-
order transition between the L, (y=0) and Ls (y >0)
phases. The modulated Pg phase appears between the L,
and L phases if the coefficient T in Eq. (1) is more nega-
tive than a characteristic value Zo(K,{a;}). The wave
vector of the modulation is then of order g*=(|x|/
2K)'2. In the present work, we shall limit the space of
solutions w(x) to one-wave-vector trial functions'®
v=wo+nocos(g*x) (which include both the planar and
P phases; see inset in Fig. 1).!" The model (1) predicts
that at the Pg-L, transition g* >0, except if X
=g, =a3=0, which corresponds to a so-called Lifshitz
point. At this point the wavelength of the modulation
diverges.'? An explanation of the molecular mechanism
by which the coefficient X can be negative lies beyond the
scope of this paper. One possible scenario invokes'®!* a
coupling between the conformation of the chains and the
curvature of the lipid/water interface; it is also conceiv-
able that the interactions between the polar headgroups
of the lipids and water could favor modulated struc-
tures.’

The second ingredient of the model is a continuum
theory of molecular interactions between membranes.
For neutral lipid bilayers the molecular potential (per
unit area), ¥ mol, includes two terms: (i) the (nonretard-
ed) van der Waals attraction which, for layers of thick-

ness & and separation d, can be written as’?
Vi(d,8)=—WIld 2—2(d+8) "2+ (d+25) "2, ()

where W==10 "22-10 2! J is the Hamaker constant, and
(ii) the so-called “hydration” repulsion' which decays
exponentially with d, and for flat layers can be written as

Vi(d) =Hexp(—d/ry) , 3)
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The choice of the order parameter as a simple scalar is a
drastic simplification since the lipid molecules possess
many degrees of freedom: hydrocarbon chain conforma-
tion, molecular tilt, and positional ordering. In order to
account fully for different symmetries® of the lamellar
phases, as well as the detailed nature of different phase
transitions, future theories must consider more elaborate
order parameters. The present approach reveals, howev-
er, that many aspects of the global phase behavior can
be explained without reference to the detailed molecular
structure of the membranes.

In order to describe the melting transitions within an
isolated membrane we introduce a phenomenological
Landau-Ginzburg Hamiltonian?

1)

[

where H is a constant of order 0.1-1 J/m?2, and A, =0.25
nm. The hydration interaction may be described within
the framework of a well-known continuum model'* in
which the repulsion arises from the ordering of the water
molecules by the membrane surfaces. This Landau-
Ginzburg Hamiltonian for a polarization variable P (re-
lated to the dipolar order of water molecules) reads

Hae [dxIVP)2+17 2P )

and leads to the effective potential (3) for d > A, when
solved in a finite-thickness slab geometry with appropri-
ate boundary conditions at the membrane surfaces. As
discussed below, Eq. (4) permits us to generalize the hy-
dration repulsion (3) to the geometry of modulated
phases, treated self-consistently in the one-wave-vector
approximation. The analogous generalization of van der
Waals forces for undulated geometries is neglected here
since over most of the phase diagram the modulated hy-
dration forces are dominant.’

Equation (1) and the molecular potential Vo=V,
+V, define completely the model:

T [aVoatyiypdy),

V24 =Z7‘[0(T, vi)+
i i <j
where y; is the internal order parameter of layer i (con-
nected to its thickness &8;). Molecular interactions are
well approximated as pairwise additive and acting be-
tween nearest-neighbor lamellae. We implicitly assume
here that the layers have the same value of order param-
eter y and spacing d; the interesting possibility of more
complicated structures in which the fluid and solid layers
coexist will be studied elsewhere. The model (5) is
solved within a mean-field approximation neglecting fluc-
tuations both in the in-plane order (y) and in the inter-
lamellar spacing (d). This last approximation means
that we completely neglect fluctuation-induced “‘steric”
repulsions'® which can— under some conditions—lead to
complete separation (unbinding'®) of the membranes.



VOLUME 61, NUMBER 19

PHYSICAL REVIEW LETTERS

7 NOVEMBER 1988

Under these assumptions we can invoke the geometrical
relationship 6/d =¢/(1 —¢), where ¢ is the lipid volume
fraction,!” and write the free energy density as a func-
tion of T and ¢, with y as a variational parameter whose
equilibrium value is determined numerically. Note that
both van der Waals and hydration interactions depend
then on y and ¢; e.g., Eq. (3) can be written as V;
=Hexpl— (1 —¢)(1+y)So/oAs].

It is important to stress that in principle there exist
enough independent structural and thermodynamic mea-
surements to fix unambiguously the values of all material
constants of the model. The diagram in Fig. 1(a) (with
% > %), which has no ripple phase, is like that found in
many phosphatidylethanolamines'8; that in Fig. 1(b)
(with £ < Xy) resembles the phase behavior of phospha-
tidylcholines.*!® In the absence of a complete set of
such measurements on any single phospholipid system,
we have used typical values for the intermediate-length
phospholipids. In order to do this (i) we have fixed
values of H==0.1 J m ™2 1,=0.25 nm, and W=1.8
x10 72! J based on osmotic stress measurements,’ and
(ii) from calorimetric and x-ray diffraction studies of
lamellar crystals coexisting with (“excess”) water, we
have adopted the typical values of the ripple wavelength
A,=10-15 nm2® and of the latent heat Q and order-
parameter jumps of L,-Lg (phosphatidylethanolamine)
or L,-Ps (phosphatidylcholine) transitions (with 7,
=310 K) as 0=25 kJ mole ~! and Ay=0.3,% with &
=3.5 nm. The choices (i) and (ii) are sufficient to ob-
tain a family of phase diagrams as a function of a, and ¢
(see Fig. 1). In addition, one can fix the temperature
scale by adjusting the position of the triple point at
T,==320 K and a typical value (see Ref. 18) of the tem-
perature range in which the Ps phase coexists with excess
water: AT==10 K [see Fig. 1(b)].

The existence of a triple point in Fig. 1(b) at which all
three lamellar phases coexist is a direct consequence of
the modification of the hydration forces due to the
modulation of the membranes. In fact, a generalization5
of the theory (4) for a sinusoidal modulation leads to an
additional repulsion term proportional to ¢ *2, which may
be written as H[Vy(x)1?, with H,~Hexp(—d/ry).
Therefore, the effective gradient-squared coefficient in
Eq. (1) is of the form Z.s =2+ H; and becomes less neg-
ative with decreasing d. This also implies that the modu-
lation wave vector ¢* decreases exponentially with 4, for
separations near the coexistence with excess water. The
recent experiments by Wack and Webb?® on phospha-
tidylcholines indeed confirm this prediction, finding the
shift of A, scaling as exp(—d/&), with £=0.23 nm =),
Similarly, the observation?! that A, does not vary
significantly with temperature (for fixed spacing d) is in
full agreement with the results of the calculations. The
typical amplitude of the modulation, found in the model
to be (0.2-0.4)8y, appears to be of the order of that
found in experiments. %’

The present model predicts that the L,-Lg coexistence
occurs with very narrow tielines, with an exponential in-
crease of T, upon decreasing water content, and with a
typical shift of the melting temperature of some 10-20 K
upon nearly complete dehydration. All of these features
are clearly observed in experiment.'® In the theory
based on a scalar order parameter, the L,-Lg coexistence
line may terminate at the critical point C.2? The two
branches of the spinodal lines emanating from C then lie
within fractions of a degree of the phase boundaries. We
believe that this proximity can be connected to the obser-
vations of pseudocritical phenomena?? in multilamellar
systems: Even if the phase boundary is crossed far from
the critical point, one may observe the growth of fluctua-
tions in the vicinity of these spinodals. Such a scenario is
distinct from those?* invoking an intrinsic pseudocritical-
ity of the melting transition of an isolated membrane.
In our calculation T9=260 K of Eq. (1) lies far away
from the melting temperature 7,,. Let us note, however,
that one may easily decrease T,, — Ty by decreasing the
hydrocarbon chain length n. In fact, it is observed that
the L.-Lg transition then becomes more weakly first or-
der. By extrapolation, Q@ and Ay would vanish for
n=n*=9-10,%% and the estimated melting tempera-
ture T,,(n*) would lie very close to To. Thus, for very
short-chain molecules the pseudocriticality may indeed
be connected to finite-size effects within single mem-
branes. Decreasing n could also permit an approach to
the Lifshitz point of the model (1) at which the ripple
wavelength A, would diverge.

The model described here accounts for many of the
observed characteristics of lamellar crystals despite the
simplifications in the choice of the order parameter and
the description of the modulated phase. It should be fur-
ther developed to include the effects of thermal fluctua-
tions and the more complicated nature of the order
parameter(s). From the experimental point of view it is
desirable to have a complete set of measurements of a
single phospholipid system, as well as systematic studies
of the phase behavior of lipids with varying chain length
n. Such measurements would permit a quantitative
check of the model presented here (or its possible
modifications), and thus contribute to the detailed un-
derstanding of interacting membrane systems.
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