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It is well-known that a soap film spanning a looped wire can have
the topology of a Möbius strip and that deformations of the wire
can induce a transformation to a two-sided film, but the process
by which this transformation is achieved has remained unknown.
Experimental studies presented here show that this process con-
sists of a collapse of the film toward the boundary that produces
a previously unrecognized finite-time twist singularity that
changes the linking number of the film’s Plateau border and the
centerline of the wire. We conjecture that it is a general feature
of this type of transition that the singularity always occurs at the
surface boundary. The change in linking number is shown to be a
consequence of a viscous reconnection of the Plateau border at
the moment of the singularity. High-speed imaging of the collapse
dynamics of the film’s throat, similar to that of the central opening
of a catenoid, reveals a crossover between two power laws. Far
from the singularity, it is suggested that the collapse is controlled
by dissipation within the fluid film surrounding the wire, whereas
closer to the transition the power law has the classical form arising
from a balance between air inertia and surface tension. Analytical
and numerical studies of minimal surfaces and ruled surfaces are
used to gain insight into the energetics underlying the transition
and the twisted geometry in the neighborhood of the singularity.
A number of challenging mathematical questions arising from
these observations are posed.

topological transition ∣ contact line

In an elegant article in 1940 (1), the mathematician R. Courant
laid out a number of fundamental questions about surfaces of

minimal area that could be visualized with soap films spanning
wire frames of various shapes. He noted that when the frame
is a double loop it can support a film with aMöbius strip topology.
Pulling apart and untwisting the loop leads to an instability
whereby the film jumps with change of topology to a two-sided
solution (Fig. 1). From splitting fluid drops (2) to reconnecting
solar magnetic field lines (3), such topological transitions (4)
abound in nature and are often associated with singular structures
that evolve rapidly to a new state. The study of minimal surfaces
dates back to the work of Euler (5) and Lagrange (6). “Plateau’s
problem,” that of proving the existence of a minimal surface span-
ning a given contour, was solved in the 1930s (7–9), and subse-
quent mathematical work has focused chiefly on statics, involving,
for example, proofs of the existence of such surfaces of prescribed
topology in higher dimensions, classification of periodic minimal
surfaces (10), and classification of embedded surfaces (11). With
few exceptions, such as a study of the transition between the
helicoid and the catenoid (12), little attention has been paid to
transitions that take one surface to another. On the other hand,
topological transitions have been studied extensively in fluid
dynamics, with an emphasis on interface collapse in viscous flows
(2, 4), and on the more inviscid problems of fluid and soap-film
motion (13–18) and networks of film junctions (19). Yet one
elementary question remains unanswered: What is the process
that takes a one-sided film to a two-sided one?

We report experimental and theoretical results on four central
issues raised by this question. We find that the singularity (i)

occurs at the film boundary, (ii) lacks the cylindrical symmetry
found in the collapse of a catenoid (13), or even the bilateral
symmetry recently observed in bubble pinch off (20), and changes
the linking number between the Plateau border and the center-
line of the wire frame, (iii) displays an intriguing crossover from
a nonclassical behavior in the collapse of the film to the more
familiar one arising from a balance of capillary forces and air
inertia (15, 21), and (iv) has energetics and geometry that may
be understood through analysis of minimal surfaces and ruled
surfaces spanning a family of parametrized frames (22).

Results and Discussion
Film Collapse Changes Linkage of Plateau Border and Frame. Remov-
ing the wire frame from the soap solution (seeMaterials andMeth-
ods), one typically finds (1) it necessary to destroy a small central
disc-shaped film to obtain the Möbius strip. Gradually pulling
apart the two loops then produces a narrow neck (or throat)
(Fig. 1A) similar to a catenoid spanning two rings (13). Looking
down this throat one sees an approximately circular boundary
meeting the frame, a situation considered recently (23), but the
geometry is now decidedly twisted and asymmetric. Once unstable
the neck collapses, leaving a two-sided surface (Fig. 1B).

To illustrate the wire deformation during the process described
above, it is helpful to introduce a particular representation (22) of
the unfolding loop through the one-parameter family of curves
C∶xðμ;θÞ ¼ ðx;y;zÞ with μ ¼ −1 and 0 ≤ θ < 2π, where

xðμ;θÞ ¼ ½μτ cos θ þ ð1 − τÞ cos 2θ�∕ℓðτÞ; [1a]

yðμ;θÞ ¼ ½μτ sin θ þ ð1 − τÞ sin 2θ�∕ℓðτÞ; [1b]

Fig. 1. Topological transition of a soap-film Möbius strip. As its frame is
gradually distorted, a critical point is reached at which the one-sided film
(A) transforms rapidly to a two-sided film (B). Scale bar in A is 2 cm.
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zðμ;θÞ ¼ ½2μτð1 − τÞ sin θ�∕ℓðτÞ; [1c]

and τ is a time-like parameter (0 ≤ τ ≤ 1; τ ¼ 0 is the double-
covered circle and τ ¼ 1 is a single circle in the xy plane, as shown
in Fig. 2). The factor ℓðτÞ normalizes the wire length to 2π,

Z
2π

0

dθ½x0ð−1;θÞ2 þ y0ð−1;θÞ2 þ z0ð−1;θÞ2�1∕2 ¼ 2π; [2]

where 0 ≡ d∕dθ. It should be noted that because the wire has a
finite diameter, this representation captures only the position
of the centerline and does not address the twisting of the material
frame of the wire. Of all the possible ways to join the two ends of a
wire together to form a double loop, the one shown in Fig. 1 was
constructed from fishing line, looped to form a double covering
of a circle, the ends being glued together face-on to lock in zero
twist Tw and one unit of writhe Wr. As is well-known (24–26), as
the wire is untwisted and unfolded, TwþWr is conserved; Wr
decreases from 1 to 0, and Tw increases from 0 to 1, with Twþ
Wr ¼ 1 at all times.

Parametric Eqs. 1 actually provide a representation of a surface
spanning C, the appropriate parameter range being (−1 ≤ μ < 1,
0 ≤ θ < π). As the surface is swept out by a straight line as θ
varies, this is a ruled surface (27). We may exploit the topological
equivalence of this family of ruled surfaces and the actual soap
film to study global properties of the surface before and after
the singularity.

Throughout the family of Möbius strip minimal surfaces, the
two closed curves tracking the Plateau border and the centerline
of the frame are topologically linked, with linking number �2,
a fact that does not appear to have been noted previously. This
double linking of the wire and the Plateau border can be seen by
graphing two nearby curves, one corresponding to μ ¼ −1 repre-
senting the wire, and the second, with say, μ ¼ −0.9, representing
the Plateau border where the surface meets the wire. These are
shown in Fig. 2B, where one can easily verify that there are four
crossings of the red and gray curves representing, respectively, the
border and the frame. Another visualization of the double linking
can be achieved with a paper Möbius strip by cutting the strip
through its midline, yielding a two-sided surface twice as long,
with two half-twists, and then cutting it again (as if to separate
the border from the wire) to yield two loops that are doubly
linked. This result can be traced back to the classic work of Listing
and Tait (28–30).

On the other hand, if the wire frame is a circle (τ ¼ 1), both the
minimal surface that spans it and its Plateau border obviously lie
in a plane; the latter traces the inner radius of the wire. This bor-
der clearly is not topologically linked with the wire and remains
unlinked under all deformations of the wire that preserve the
film’s two-sidedness, as can be seen in Fig. 2C. Hence, not only
does the bulk of the film undergo a transformation from one-
sided to two-sidedness, but the boundary itself must experience
a simultaneous topological transition.

Close inspection of the region near the singularity before and
after the collapse (Fig. 3) shows the Plateau border twisting
around the wire. The pitch of that twist is large before the col-
lapse (Fig. 3 A and B), on the scale of the throat, and small after it
(Fig. 3 C and D), on the scale of the wire, and the sense of the
twist reverses at the critical instant tp at which the hole disap-
pears, when the throat envelops the wire and the border and
the wire ceases to be linked. The strong deformation of the mini-
mal surface near the Plateau border twist is visible through the
deflection of light into a caustic. If the wire loop is further opened
(as in Fig. 2A) toward a single planar circle, then the twist seen in
Fig. 3C eventually disappears smoothly, but reappears if the
frame is again deformed back toward a nonintersecting double
loop. This process can be viewed as the interconversion of twist
and writhe (here we are talking of the twist and writhe of the
ribbon-shaped surface bounded by the Plateau border and the
centerline of the wire). When the frame bounding the soap film
is a single circle, its writhe is zero, and this ribbon has no twist,
consistent with zero linking number. On the other hand, the non-
intersecting double loop (e.g., τ ¼ 0.3 in Fig. 2A) has a writhe of
nearly unity, and the ribbon now has a twist that balances that
writhe (31). It is the change in the linking number of the ribbon,
which occurs at the singularity, that has escaped previous notice.

Moreover, we have found that, contrary to Courant’s original
statements (1), the transition has a fundamental lack of reversi-
bility. That is, although the change from one- to two-sidedness
happens spontaneously beyond a critical surface configuration,
a transition from two- to one-sidedness can be achieved only
by forcing the wire to come in contact with itself, thus creating
a region of the film where the necessary reconfiguration of the
Plateau border can occur.

The twisting of the stationary film remaining immediately
after the transition (Fig. 3C) is centered at the point of maximum
curvature of the wire and extends over a region whose extent is
comparable to the wire radius. The mean curvature H ¼ ð1∕R1 þ
1∕R2Þ∕2 of the surface is everywhere zero by virtue of the energy-
minimization condition (where R1;2 are the local principal radii of
curvature), but, unlike everywhere else on the film, the Gaussian
curvature K ¼ 1∕R1R2 in the region of the caustic is very large.
This is a physical realization of a solution to two general classes
of problems. The first was discussed by Courant (32), who proved
the existence of a minimal surface, part of whose boundary lies
on specified contours, the rest being constrained to lie on speci-
fied surfaces. Here, the particular shape of the Plateau border
as it twists around the boundary is part of the unknown of the
minimal-surface problem. Given the high Gaussian curvature,
it is likely that singular perturbation methods, where the wire
radius defines the small parameter, should be applicable.

The second class of problems, discussed by Douglas (9), is an
extension of his results on Plateau’s problem to one-sided sur-
faces bounded by a given contour. In this work, he uses the ex-
ample of a contour in the form of a double-covered circle [e.g.,
Fig. 2A (τ ≲ 2∕3), equivalent to his figure 1] to note that such a
contour not only supports a film with the topology of a Möbius

Fig. 2. Schematic of the complete unfolding of a wire frame. (A) Sequence of contours produced from the one-parameter family of curves, Eq. 1, with μ ¼ −1
and increasing values of the parameter τ. (B) Double linking of the Plateau border (shown schematically in red) and the frame at low τ, before the transition.
(C) After the transition the Plateau border and frame are unlinked.
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strip, but “…there also exists a minimal surface bounded by the
same contour having the ordinary topology of a circular disc; but
this other surface is self-intersecting, and it is rather the one-
sided surface which is obtained in the actual experiment.” It is
certainly true in our experiments that upon removing a given wire
frame of this shape from the soap solution one never finds a two-
sided surface. It is the Möbius strip with the additional central
film that is the most commonly obtained configuration; the
Möbius strip by itself seldom happens. However, the two-sided
solution for this configuration of the wire can be obtained, as
described above, by distorting the frame and returning it to
the initial position once the Möbius strip has collapsed. That this
new configuration is stable is an indication of the hysteresis in this
system.

The fact that we have obtained a nonintersecting two-sided
minimal surface spanning the double-covered circular contour
apparently contradicts Douglas’s remark. The resolution of this
apparent discrepancy resides in the finite thickness of the wire,
which regularizes what would otherwise be a singularity. We
should also note that Douglas studied the location of the singu-
larities on the two-sided minimal surfaces bounded by a contour
of zero size, whereas we have performed experiments where the
singularity occurs when the film is supported by a finite size con-
tour (the wire). To make a comparison between Douglas’s
results and the experimental ones, it would be necessary to study
the limit of the wire radius approaching zero after the singularity
has developed; but this limit inverts the order of the limiting
processes implicitly considered by Douglas. Because we already
know that there is hysteresis in the system, one would expect
that the outcomes of these two different routes toward the sin-
gularity may not yield the same result. As is described in the
following section, we observe that the singularity develops at
the wire frame (surface boundary), a fact that should not be con-
sidered as a contradiction to Douglas’s theorem stating that the
two-sided surface spanning the contour has a singularity in its
interior, but simply as a consequence of the different approaches
to the singularity.

The Singularity Occurs at the Film Boundary. Careful manipulation
of the wire frame has allowed us to trigger the instability of the
Möbius strip film on demand, so that high-speed movies of that
process can be reliably obtained (seeMaterials and Methods). The
collapse process itself typically takes about 0.1 s. Fig. 4 A–D are

frames from a high-speed movie at 5.4-ms intervals showing the
approach to the singularity and the collision of the surface throat
with the frame. The contrast enhancement achieved by the use of
fluorescein in the film allows us to trace the whole projected
shape of the collapsing throat with an edge-detection algorithm.
Extensive experimentation has shown that the only route to the
two-sided solution from the Möbius film is via a singularity at the
boundary wire. In fact, the singularity never occurs away from the
boundary, even in the presence of the second (disc-shaped) film.
This is as one would expect because, as explained above, not only
does the bulk of the film undergo a topological transition (one-
sided to two-sided), but the boundary itself participates in this
transition. We conjecture that in general any singularity asso-
ciated with such a transition must always occur at the film bound-
ary because, as we have noted, the linking number of the wire
centerline and the Plateau border changes from �2 to zero at the
transition, and this linking number, here defined for two closely
adjacent curves (coincident in the limit as the wire radius tends
to zero), clearly cannot be changed by a singularity on the film at
any finite distance from the boundary. Translating this abstract
argument to the experimental context is however nontrivial, for
although the singular rearrangement of the Plateau border must
occur at some point of the wire, it is by no means evident that the
collapsing surface is always directly driven to this point; yet that is
what is observed (Fig. 4).

Dynamics of the Finite-Time Singularity. When a minimal area soap
film becomes unstable due to boundary deformation, there is a net
resultant of surface-tension forces driving its motion. From mo-
vies of this collapse we extract a time-dependent throat diameter
DðtÞ, the distance between the wire and the film (Fig. 4A). Fig. 5
shows the width DðtÞ, for three runs, measured with respect to
the apparent pinch time tp. In this log–log plot we see a crossover
at tp − t ∼ 5 × 10−3 s between two distinct regimes of power-law
behavior, D ∼ ðtp − tÞν. Fitting the data asymptotically close to
the singularity (tp − t≲ 0.003) we find ν1 ¼ 0.67� 0.02, whereas
far from the singularity (tp − t≳ 0.015), we obtain the exponent
ν2 ¼ 0.33� 0.02. When the force on the film, proportional to
the product of the surface tension σ and the local mean curvature
H, is resisted only by the inertia of air, with mass density ρ then
dimensional arguments (15) and boundary-integral formulations
(21) show that the width should vanish as D ∼ ðσ∕ρÞ1∕3ðtp − tÞ2∕3,
in good agreement with the observed exponent ν1. To our knowl-

Fig. 3. Details of the twist singularity. The twisted Plateau border far from the collapse time (A) is shown schematically in B as a red line wrapping around the
wire (gray). Just after the collapse (C) the border is twisted around the frame as shown inD and produces the caustic in C. Note the reversal of the sense of twist
between A and C.
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edge, the exponent ν2 observed far from tp has not been reported
previously in contexts such as this. As this occurs when the inter-
face is beginning its motion, it is reasonable to suspect that the
Young–Laplace force would be balanced by dissipation. Examin-
ingmovies of the collapse we observed that at the onset of collapse
there is torsional motion of the Plateau border as the twist is
focused toward an ever smaller segment of the wire (Fig. 4).
An application of lubrication theory similar to ref. 33 to calculate
the viscous forces within the wetting film on the wire yields the
equation of motion D2 _D ∼ σh2∕3μ, where h is a typical thick-
ness of the film and μ is the fluid viscosity. This has the solution
D ∼ ðσh2∕μÞ1∕3ðtp − tÞ1∕3, an exponent consistent with the experi-
mental value of ν2 (Fig. 5).

Geometry of Twist Singularity and Surface Energetics.As equilibrium
soap films minimize their surface area, the transition from one
to two sides must lower the energy. The energetic competition
among minimal surfaces can be studied numerically by using
the computational routine Surface Evolver (34) to find the stable
surface(s) that span curve C for various τ. Here we implement
this calculation with a boundary of zero thickness [as in Douglas’s
analysis (9)] and therefore do not address any effects of the
Plateau border. As described inMaterials and Methods, the calcu-
lations are done on surfaces of a fixed topology, determined by
the connectivity of the coarse initial grid that defines the surface.
We find that stable two-sided solutions exist for 0.41≲ τ ≤ 1,
whereas stable Möbius strip solutions are found in the range 0 <
τ ≲ 0.42 (within the small overlap of these ranges the relaxation
scheme is extremely slow to converge, and it is difficult to be
definitive regarding stability). The areas (surface energies) of
these two branches of solutions are shown in Fig. 6A along with

a number of minimal surfaces found numerically. The energy
differences at the crossover point are extremely small. Continuing
the numerical scheme beyond the point of instability of the one-
sided solution allows one to approach the singularity through the
very simplified dynamics of motion by mean curvature, the relaxa-
tionmethod of Surface Evolver. Interrupting this evolution before
it becomes singular, we obtain an approximate representation
of the twisted throat (Fig. 6B), similar to the experimental one
(Fig. 4D).

For comparison, let us return to the ruled surfaces defined by
Eq. 1. As shown in Fig. 6A, and confirmed by analytical calcula-
tions, the energy EðτÞ of the ruled surfaces spanning C approx-
imates that of the minimal surfaces especially well for τ ≲ 0.3 and
τ ≳ 0.8. However, the value of τ at which the topological transi-
tion occurs differs between the two: τ ¼ 2∕3 for the ruled surface
versus τ ≃ 0.42 for the minimal surface.

In detail, there are three critical values of τ in the evolution
of the ruled surface as τ increases from 0 to 1. First, for τ > τ1 ¼
2 −

ffiffiffi
2

p
≈ 0.586, the surface is self-intersecting on a straight line

segment (35). This may be shown by seeking parameter pairs
ðμ;θÞ and ðμ0;θ0Þ that yield the same values of x, y, and z in
Eq. 1; such pairs indeed exist for τ > τ1. The minimal area soap
film obviously cannot share this feature of self-intersection. Sec-
ond, when τ increases through the critical value τ2 ¼ 2∕3, the
projection of C on the plane z ¼ 0 loses its loop, being cusped at
θ ¼ 0 for τ ¼ τ2. Therefore, at τ2, the hole through the one-sided
surface S disappears: Its genus falls from 1 to zero (Fig. 7). Third,
when τ is further increased through the critical value τ3 ¼ 4∕5,
the bounding curve C passes through an “inflexional configura-
tion”; i.e., there is instantaneously an inflexion point of zero
curvature on C, Q say (36). At τ3, the torsion at Q is infinite,
but the singularity is integrable; in fact, it is at τ3 that the internal
twist of the wire jumps from zero to �1 (31).

Even though the ruled surface Eq. 1 self-intersects for τ > τ1,
i.e., even before the throat disappears, it nevertheless provides
qualitative insight into features of the surface as it approaches
the singularity. At τ ¼ τ2, as mentioned above, the projection of
C on the plane z ¼ 0 is cusped at θ ¼ 0; for τ > 2∕3, this projec-
tion has no reentrant loop. When τ ¼ τ2, C has the form near
θ ¼ 0 of the twisted cubic with local parametric equations (with
~x ¼ ℓx, etc.)

~x≃ −
1

3
−
1

3
θ2; ~y≃ −

1

3
θ3; ~z≃ −

4

9
θ: [3]

Fig. 7 shows the projection of a portion of the surface
−1 < θ < 1, −1 < μ < −0.9 on the xy plane for values of τ near
the critical value τ2 ¼ 2∕3, showing how the hole disappears when
the cusp in the boundary curve μ ¼ −1 is apparent. Close exam-
ination shows that the singularity that appears to propagate

Fig. 5. Dynamics of the topological transition. The time dependence of the
throat diameter D, for three typical separate events (colored symbols). Red
lines indicate best-fit power laws, with exponent ν1 ≃ 0.67� 0.02 close to the
singularity and ν2 ≃ 0.33� 0.02 far from the pinch time tp.

Fig. 4. Collapse of the Möbius strip throat. (A–D) Frames from a high-speed movie at 5.4-ms intervals show the approach to the singularity and collision with
the frame. The throat diameter D used to quantify the collapse dynamics is indicated in A.
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toward the center of the disc for τ > τ2 is in fact a twisted fold (or
cusp catastrophe); defining τ� ¼ 2ð1 − τÞ and scaled variables
X ¼ τ�ð~xþ τ�∕2Þ, Y ¼ τ�2~y, Z ¼ ~z∕τ� its local equation can be
expressed in the universal form

1

2
Z3 þ XZþ Y ¼ 0. [4]

This twisted saddle structure (Fig. 6C) constitutes an idealized
approximation to the observed film structure, as well as that
obtained numerically (Fig. 6B), and reveals how the twist of
the surface imposed by the distant boundary may persist at the
transition.

Conclusions
The results presented here indicate that the topological rearran-
gement of a soap film is far more subtle than previously thought.
Although the transition from a one-sided to a two-sided surface
was known, the role of the Plateau border and its linkage to the
frame was not recognized. By establishing experimentally that
there is a twist singularity involving reconnection of the Plateau
border, a number of challenging mathematical and physical issues
are raised. For example, can one prove rigorously our conjecture
that the singularity must always occur on the boundary of the

minimal surface for a wire of finite radius? For sure there must
be a singular rearrangement of the Plateau border at the wire, but
is the collapsing surface always driven directly to that point?
What is the precise geometry in the region of concentrated twist
left after the transition (Fig. 3C)? What is the nature of the sin-
gularity in the limit of vanishing wire radius?

On the more physical side, a major challenge is to develop
an equation of motion for the collapsing surface that includes
the singular change in the linking number. Such an equation of
motion must account for the viscous dynamics of the Plateau
border reconnection. Finally, and more generally, one would like
a complete classification of the possible types of topological tran-
sition from one minimal surface to another and their associated
singularities.

Materials and Methods
Wire Frames and Soap Solutions. The films were formed on fishing line (dia-
meter 0.73 mm), ∼32 cm long, looped to form a double covering of a circle
and whose ends were glued together face-on, locking in one unit of twist.
The frame was held by two chrome-plated alligator clips, each at the end of a
long delrin handle. The soap film was composed of water, glycerine, and
washing up liquid (1), to which fluorescein was added to allow visualization.

Imaging. Films were illuminated with high-power cyan light-emitting diodes
(Luxeon Star, 505 nm) to maximize contrast when viewed against a back-
ground of black flocked paper (Thorlabs). High-resolution still images were
obtained with a Nikon D3000S digital single-lens reflex and a 60-mm f/2.8
micro-Nikkor macro lens; high-speed imaging utilized a Phantom V310 and
the same macro lens, at speeds up to 5,600 fps. Image sequences were ana-
lyzed with Matlab and ImageJ. A high-speed movie of the collapse dynamics
can be found in Movie S1.

Surface Evolver Calculations. Here we note the initial vertices and edges used
to create one- and two-sided surfaces within the Surface Evolver environ-
ment (34). For the two-sided surface the initial vertices vn lie on the boundary
curve Eq. 1 (μ ¼ −1) and with θn ¼ ðn − 1Þπ∕5 for n ¼ 1;…;10, and v11 ¼
ð0;0;0Þ. The 20 edges are ð1∕2;2∕3;…;9∕10;10∕1;1∕11;2∕11;…10∕11Þ, and
the faces are ð1∕12∕ − 11; 2∕13∕ − 12;…; 10∕11∕ − 20Þ, where the minus sign
signifies traversal in the opposite sense. The one-sided surface has the 10
vertices v1–v10 above, the 15 edges ð1∕2;2∕3;…;9∕10;10∕1;1∕6;2∕7;…5∕10Þ,
and 5 faces ð10∕11∕ − 5∕15; 11∕6∕ − 12∕ − 1; 12∕7∕ − 13∕ − 2; 13∕8∕ − 14∕ − 3;

14∕9∕ − 15∕ − 4Þ.
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Fig. 7. Evolution of the ruled surface with τ. Section of ruled surface −1 <
μ < −0.9 (Left) and enlargement near θ ¼ 0 (Right) as τ passes from below
(A) to above (C) the critical value τ1 ¼ 2∕3 (B) at which the genus changes.

Fig. 6. Energy and geometry of surfaces. (A) Numerically obtained minimal surfaces (gray) and ruled surfaces (copper) as a function of the model parameter τ.
Black and red filled circles indicate the minimal energy for the two classes of surfaces. The blue line is the energy of the ruled surface. (B) Two views of the
surface geometry for τ beyond the limit of stability of the one-sided surface, where surface is evolving toward a singularity by the numerical relaxation scheme
and the evolution has been terminated just prior to the singularity. (C) The universal “twisted saddle” geometry from the ruled surface model. Note similarity
with the throat in B.
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