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The relaxation of electric birefringence in dilute solutions of a polyelectrolyte is shown to be consistent
with a stretched-exponential form, expl — (¢/7)°]. The exponent a depends on polymer length L and sol-
vent ionic strength only through the ratio x=L/L,, where L, is the persistence length, and crosses over
from a==1 for stiff chains (x==1) to a=0.44 +0.02 in the self-avoiding-walk regime x>>1, the latter in
accord with a simple scaling theory of polymer statistics and dynamics.

PACS numbers: 78.20.]Jq, 36.20.Ey, 61.25.Hq

Scaling arguments ' suggest that the dynamics of flexi-
ble polymers are governed by a single, fundamental re-
laxation time that varies with the statistical properties of
the chains. While confirmation of such scaling concepts
has been obtained in recent years, primarily by quasi-
elastic-light-scattering experiments,? a full description of
the time dependence of the chain relaxation is still una-
vailable. We may remark, however, that studies® of
transient electric birefringence (TEB) in aqueous solu-
tions of charged polymers have shown that the decay of
birefringence after the application of an electric-field
pulse is nonexponential, and perhaps indicative of a su-
perposition of several exponentially decaying processes.
We report here on detailed transient-birefringence exper-
iments whose aim is to test a different interpretation of
such experimental data, the motivation for our work
coming from two sources; (i) the strong analogy between
the statistics of linear, flexible polymers and various
features of critical phenomena,! and (ii) recent TEB ex-
periments* on binary mixtures that have revealed that
the relaxation of birefringence near the consolute point
is strongly nonexponential, following an asymptotic
stretched-exponential form of the type

R(@t)~expl—(@(/7)°] (O=<a=<1), )

where for binary mixtures a is temperature independent
in the critical region, while the effective time constant
7(¢€) exhibits a power-law divergence in the reduced tem-
perature €= |T—T.|/T.. These findings are consistent
with a simple theory based on static and dynamic scaling
laws applicable to critical fluids. The interpretation
given to these results is that transient birefringence, un-
like more conventional methods such as dynamic light
scattering, probes critical fluctuations on all length
scales, the resulting broad distribution of relaxation
times yielding the new decay form (1).

We have studied five different molecular weights of
the linear polyelectrolyte sodium polystyrene sulfonate
(NaPSS) in dilute solutions at various ionic strengths I,

and have found that in all situations the relaxation of the
induced birefringence is very well described by the
stretched-exponential form. The apparent value of a is a
monotonically decreasing function of the ratio x=L/L,,
where L is the extended length of the polymer and L, is
the persistence length. L, itself, a function of I, has been
estimated elsewhere® from intrinsic viscosity measure-
ments. The exponent a is found to be close to unity for
x==1, and to cross over to @==0.44 +=0.02 for x>1. We
suggest a simple derivation of these observations by not-
ing that birefringence is sensitive to the end-to-end dis-
tance of the polymers, and the statistical distribution of
this quantity leads to a distribution of relaxation times.
That distribution is extremely narrow in the limit of stiff
chains (x=1), so the relaxation is a nearly pure ex-
ponential, while in the opposite limit (x>>1) the chains
are self-avoiding walks, with a distribution of sizes given
by scaling laws related to the universal critical exponents
of the polymers. Further, we find that the experimental
time constant 7 scales as a power of the radius of gyra-
tion, as estimated from proposed scaling laws,®” in a way
fully consistent with the known dynamic scaling for poly-
mers.

The TEB experiments, described elsewhere,? consist of
applying a rectangular pulse of electric field to the poly-
mer solution and observing the associated pulse of in-
duced birefringence. The optical path length of the cell
is 60 mm, and the electrodes have a separation of 1 mm.
All the measurements were performed at room tempera-
ture. Voltage pulses with heights of 0.5-5 kV/cm and
durations of 20-500 us were used. The output of the
photodetector, which is linearly related to the induced
anisotropy of the refractive index of the solution, is sent
to a transient digitizer and averager (Data 6000, Data
Precision), the decay being sampled over 1000 points,
with typically the last 100 points used to evaluate the
base line to an accuracy of better than 0.2%. The overall
response time of the apparatus is less than 1 us.

NaPSS presents a large specific Kerr constant because
the monomer has a strong optical anisotropy and it is an
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electrolyte. It is known, in fact, that the induced polar-
ization can by very large in polyelectrolytes because of
the dominant contribution of the counterion atmosphere
which surrounds the charged macromolecule.’® Since
the conductivity of the sample must be very low in an
electric-birefringence experiment, it is possible to study
polyelectrolytes only at very low concentrations, below a
few millimolar (mM), of both polymer and salt.

Our samples consisted of water solutions of nearly
monodisperse (M,,/M,<1.1) NaPSS obtained as mo-
lecular-weight standards from Pressure Chemical Co.,
Pittsburgh, and used without further purification. The
five different molecular weights used are M =8.8x10%,
2.0x10%, 3.54x10% 6.90% 105, and 1.06x 10, The ionic
strength of the solvent was varied by the addition of
NaCl in the concentration range 0-6 mM. Some mea-
surements have also been performed with no added salt.
All solutions were prepared with deionized water and
salt of analytical grade. The polyelectrolyte concentra-
tion ¢ has been chosen so as to explore only the “dilute”
regime, in which the polymer concentration ¢ is smaller
than the entanglement concentration' c¢*, where c*
=M/N 4R, with Rg, the radius of gyration, depending
on L, L,, and the Debye-Hiickel screening length.® The
concentrations used were in the range (0.25-10)%10 ~2
mg/cm? for the longest polymer, with ¢ progressively in-
creased as M decreased, always satisfying the criterion
of c <c*.

All the reported data refer to measurements per-
formed in the Kerr regime, that is, the regime in which
the induced birefringence is proportional to the square of
the applied field. For the longest polymer, we found (as
in a previous study®) that the Kerr regime is rather
small; e.g., with ¢=0.1 mg/cm?® and 1 mM NaCl, satu-
ration effects appear when the applied field exceeds 1.3
kV/cm. We have verified that the shape of the bire-
fringence pulse does not depend on the field strength or
the pulse duration in the Kerr regime.

Here we focus on the decay of the birefringence after
removal of the applied electric field. With B(z) the ob-
served birefringence at time ¢ after the termination of
the applied field, we define a normalized relaxation func-
tion R(+)=B(t)/B(0). Figure 1 shows R(z) for three
different polymer solutions, plotted as a function of the
scaled time t/1(L,I), where 7(L,I) is the fitted relaxa-
tion time for each polymer system, varying with both
polymer length L and the ionic strength I of the solution.
The curve for the shortest polymer is nearly exponential;
the other two present strongly nonexponential shapes.
We find, however, that all of these curves, and indeed all
of the investigated solutions of NaPSS, may be described
by the form (1). As for the time constant, the best-fit
values of a(L,I) vary with molecular weight and ionic
strength. The inset of Fig. 1 shows the same three relax-
ation functions on a semilog plot as a function of the
scaled time (¢/7)¢, using the fitted 7 and a for each sys-
tem; it is seen that they collapse onto a common curve,
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FIG. 1. The normalized electric-birefringence relaxation

function plotted vs scaled time, for three polymer solutions.
Solution conditions are as follows: +, M =8.8x10% c¢=20
ug/cm?, no added salt (residual ionic strength =0.05 mM); A,
M =2.0x10°% c=20 pg/cm? 1 mM NaCl; ®, M =1.06x 105,
c¢=5 pg/em? 1 mM NaCl. Inset: Semilog plot of R(1) vs
t/7(L,D), with parameters a=1.0 and t=6.5 us, @ =0.78 and
=13 pus, and a=0.44 and r =240 yus, respectively.

the stretched-exponential form being obeyed essentially
over the full range of times accessible experimentally.
We find a==1 for the shortest polymer at very low ionic
strength, and by increasing the polymer length and (or)
the ionic strength decreasing values of a result, with sat-
uration at a==0.44 = 0.02 for the longest polymer at ion-
ic strength above 2 mM.

The behavior of the persistence length of polyelectro-
lytes at very low ionic strength is not clearly understood.
We have estimated the persistence length for NaPSS by
extrapolating to our conditions the experimental results
and numerical studies discussed elsewhere.® Signifi-
cantly, several experiments>® suggest that L, does not
diverge at low /, but rather saturates at a constant value.
The empirical formula proposed® for L, reads, in the
case of NaPSS, L, '=0.002+0.002581 2, with L, in A
and I in mM. The value of L, we can derive from the
relaxation function shown in Fig. 1 (in the absence of
added salt), by assuming that the measured decay time
is that associated with rotational diffusion of a rigid rod
having length L,, is in fair agreement with the empirical
formula. By taking into account both the added salt
concentration and the concentration of uncondensed
counterions, we arrive at the experimental variation of
the exponent & with the ratio L/L, shown in Fig. 2.
Presented this way, we see that the stretch exponent in
dilute solutions depends on polymer length, ionic
strength, and polymer concentration only through the
scaled length L/L,. In addition to the experimentally
determined value of r for each system, we may also
define an effective time constant T directly from the re-
laxation function as 7= [ R(¢)dt; for a pure stretched
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FIG. 2. Experimental stretch exponent a as a function of
the ratio of polymer length to persistence length, for varying
molecular weights of polymer, as indicated. Concentrations
(ionic strengths) in mg/cm? (mM) are as follows: X, 0.05
(0.05), 0.1 (4.0); &, 0.02 (0.05), 0.02 (0.4), 0.02 (0.6), 0.02
(1.0), 0.02 (2.0); m, 0.005 (0.05), 0.05 (2.0); +, 0.005 (0.05),
0.05 (2.0); @, 0.005 (0.05), 0.01 (0.5), 0.025 (1.0), 0.05 (2.0),
0.1 (4.0), 0.1 (6.0).

exponential, 7=a ~'I'(a "') 7, I being the gamma func-
tion, and this relation is confirmed within experimental
error. Figure 3 shows the experimental values of 7 plot-
ted here as a function of Rg, the latter estimated from
the proposed scaling law:%7 Rg=L%%(L,/x)°?, with
the inverse screening length. Apart from a slowly vary-
ing function (implicitly present in the crossover of a),
similar exponents for the variation of both 7 and t with
R are obtained, namely, r~R{, with g=2.9+0.2.

The nonexponential dynamics of flexible chains are
usually discussed in terms of a discrete set of relaxation
modes.? Previous work* and the analogy between poly-
mer statistics and critical phenomena suggest instead the
following interpretation. Following Kuhn,'® we note that
the amplitude of the response of a single chain to an ap-
plied electric field is a function of its end-to-end distance
R. In considering a dilute solution, we may imagine
writing the relaxation of birefringence B(¢) as a sum of
individual-particle responses, averaged over the probabil-
ity distribution P(R) of the fluctuating quantity R,

B = [dRSRIP(R)expl —1/+(R)] , @

where S(R) is some signal function and 7(R) is the re-
laxation time appropriate to a chain with end-to-end dis-
tance R.

For a non-self-avoiding polymer, P(R) is Gaussian for
large R, P;—~expl—(R/Rs)?], where Rg scales with
polymer length Rg~L", with vg = 5 being the classical
value of the critical exponent. For real polymers in good
solvents, where excluded-volume constraints swell the
chains from their Gaussian size, it has been demonstrat-
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FIG. 3. Relaxation time 7 as a function of the estimated ra-
dius of gyration of the polyelectrolyte. The dashed line indi-
cates the power-law fit with an exponent of 3.0 £ 0.2.

ed'! that P(R) also decays as the exponential of a power
of R,

P(R)~f(R)expl—(R/Rg)°1, 3)

where now §=1/(1 —v) is given in terms of the univer-
sal exponent v==0.59 appropriate to a self-avoiding walk,
and the prefactor f(R) varies as some power of R. The
dependence of S(R) on R is somewhat complex, al-
though from our data and other studies,>”-® we estimate
a power-law dependence of the steady-state anisotropy in
the index of refraction; An~R*, with s=1. Finally, the
dependence of the relaxation time on the polymer
configuration may be obtained by the usual Stokes-
Einstein relation for the diffusion constant, D(R)~R ~!,
and the diffusive relation D(R)7(R) ~R? so

7(R)~RY, (C))

with ¢ =3, which may be viewed as the dynamic critical
exponent.

With the exponential form for the probability distribu-
tion and a power-law variation of the relaxation time, we
may determine the long-time behavior of the integrand
in (2) by a saddle-point analysis focusing on those two
terms, the remaining power-law variations of the prefac-
tors in S(R) and P(R) leading only to slow corrections
to the resulting behavior. We obtain a result analogous
to that found by Cohen and Grest'? in their free-volume
theory of glassy relaxation, namely, that the stretch ex-
ponent a is given by the two exponents § and g,

a=5/(6+g)=1/[1+q(1 —V)]. 5)

Thus, in the fully developed self-avoiding limit, the
stretched-exponential form is characterized by a univer-
sal value of the stretch exponent a, itself expressed in
terms of static (v) and dynamic (g) critical exponents.
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Moreover, the relaxation time that appears in the
stretched-exponential form (1) scales as 7~R{. Thus,
although the form of relaxation is anomalous, the
characteristic time selected by the system is consistent
with dynamic scaling. This is analogous to the behavior
of critical binary mixtures, namely, anomalous relaxa-
tion with a time constant diverging as &%, where £ is the
correlation length associated with composition fluctua-
tions and z is the dynamic critical exponent.

Several previous investigations of polymer dynamics
indicate that g=3, and the data presented in Fig. 3 are
consistent with such a result. Using the known value
v=0.59 (§=2.44) and g=3, we obtain @=0.45. The
measured asymptotic value of the stretch exponent in the
limit of a flexible chain (L/L,>>1) is seen in Fig. 2 to be
in excellent agreement with this prediction. In the oppo-
site extreme, L/L, of order unity, the macromolecule is
a rigid rod, with a very narrow probability distribution,
and consequently R(z) is an exponential (a=1). The
fact that R(z) appears to be a stretched exponential even
at intermediate values of the ratio L/L, indicates that
P(R) presents a rapidly decaying tail which can be de-
scribed as an exponential of the type exp(— ARP), with
p =4, although we cannot exclude the possibility that
the intermediate values of a reflect slow crossover behav-
ior. In order to derive the precise dependence of @ on the
scaled variable L/ L,, we would need to know the scaling
behavior of P(R) for the case of a semiflexible chain,
and this is at present an important open problem.

As a final comment, it should be noted that the
stretched-exponential form appears to be a very general
law for the relaxation of complex random systems.!* At
variance with most of the previously reported observa-
tions of such relaxation, we are here able to suggest a
“microscopic” theory of the stretch exponent.!* In the
concentration range where the interparticle interactions
are small, and for sufficiently large polymer lengths rela-
tive to the persistence length, the observed value of the
stretch exponent agrees well with a simple theoretical
prediction relating it to critical exponents of polymers.
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