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Abstract
A linear stability analysis of metallic nanowires is performed in the free-
electron model using quantum chaos techniques. It is found that the classical
instability of a long wire under surface tension can be completely suppressed
by electronic shell effects, leading to stable cylindrical configurations whose
electrical conductance is a magic number 1, 3, 5, 6, . . . times the quantum of
conductance. Our results are quantitatively consistent with recent experiments
with alkali metal nanowires.

AMS classification scheme numbers: 76E17, 81Q50, 82D35

PACS numbers: 4720D, 0545M, 6866L

1. Introduction

Plateau’s celebrated study [1, 2] of the stability of bodies under the influence of surface tension
established a fundamental result of classical continuum mechanics: a cylinder longer than its
circumference is energetically unstable to breakup. Here we consider a quantum mechanical
generalization of Plateau’s study—the stability of a metallic nanowire. Methods from the study
of quantum chaos [3, 4] are used to examine the energetics of a free-electron gas in a cylindrical
jellium filament and show that an infinite filament can be stable against all axisymmetric
perturbations if its electrical conductance G (in units of G0 = 2e2/h = (12 906.4 Ohm)−1)
belongs to a set of ‘magic numbers’ n = 1, 3, 5, 6, . . . and is otherwise unstable. Here e is
the charge of an electron and h is Planck’s constant. Such magic numbers are analogous to
those found in the shell model of atomic nuclei [4] and in metal clusters [4, 5]. Our stability
analysis elucidates and confirms the stability properties of simple metal nanowires conjectured
by Yanson et al [6] based on their observation of shell structure in the conductance statistics
of sodium nanowires.
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Figure 1. Deformation of wavevector q of a cylindrical nanowire.

Structural multistability of metallic nanowires was previously postulated based on classical
molecular dynamics simulations [7–9]. However, the magic numbers observed in conductance
histograms in alkali metals [6, 10] are clearly an electronic shell effect, as shown below,
and cannot be explained with classical molecular dynamics. The common occurrence of
multistability in two such radically different models likely stems from the fact that both models
introduce an additional length scale (the Fermi wavelength λF in the free-electron model and
the atomic diameter in molecular dynamics simulations), which leads to commensurability
effects.

The properties of nanowires formed from simple monovalent metals, like the bulk
properties of these materials [11], are determined largely by the delocalized conduction
electrons. A free-electron jellium model, treating the electrons as a non-interacting Fermi
gas confined within the wire by hard-wall boundary conditions, provides an intuitive and even
quantitative explanation of observed quantities such as conductance [12–14], force [13–17]
and shot noise [18]. To examine energetic stability, we consider a weakly deformed cylinder
and find its thermodynamic potential to quadratic order in the amplitude of the deformation. A
contribution proportional to the filament area, naturally identified as the surface tension, is only
one of several competing terms in the free energy, which consists of terms which vary smoothly
with the geometry of the filament and an oscillatory contribution directly connected with the
discrete energy levels that are solutions to Schrödinger’s equation. The smooth terms appear
in descending powers of length (proportional to volume, surface area, mean curvature, etc) and
are quite analogous to those found in the study of classical wave equations in curved domains
[19] and the related problem of classically screened Coulomb (Debye–Hückel) interactions of
curved surfaces in an electrolyte [20]. The oscillatory part of the free energy, in particular,
alters Plateau’s classical stability analysis in an essential way. This paper is thus fundamentally
distinct from that which has dealt with the quantum mechanical origin of surface tension itself
in metallic fluids [21], as well as those which consider quantum mechanical corrections to
classical surface tension due to the quantization of capillary waves [22].

Long gold nanowires suspended between gold electrodes have been produced and imaged
with a transmission–electron microscope by Kondo and Takayanagi [23, 24]; in particular, they
have observed wires which are stable and almost perfectly cylindrical. The wires of [23, 24]
are of finite length and attached to electrodes at either end. It seems reasonable to consider an
infinite wire as a theoretical starting point and to assume that the length of the wire acts as a
cut-off: deformations with a wavelength longer than the wire length cannot occur. Thus one
does not have to model the boundary conditions at the ends of the wire, which would introduce
additional parameters.

To be specific, we examine an infinite cylindrical wire and its sole classically unstable
deformation—an axially symmetric one (see figure 1). Any such deformation can be written
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Figure 2. Density of states g(EF ) of a cylindrical wire (upper diagram) and stability coefficient α
(lower diagram) versus the radius R0 of the unperturbed wire. The wavevector of the perturbation
is qR0 = 1. Broken curve, Weyl contribution to α.

as a Fourier series:

R(z) = R0

(
1 +

∫ ∞

0
dq b(q) cos(qz + φ(q))

)
(1)

where R(z) is the radius at position z, R0 is the unperturbed radius, b(q) is the (infinitesimal)
perturbation coefficient and φ(q) is an arbitrary phase shift. The coefficients b(q) are chosen
such that the total volume of the wire is unchanged by the deformation. Other physically
reasonable constraints [17] are also possible, but lead to similar results.

The metallic nanowire is an open system, connected to macroscopic metallic electrodes
at each end [6, 10, 23–28]. Therefore, the change of the grand canonical potential� under the
perturbation determines its stability. � is related to the electronic density of states g(E) by

� = −kBT
∫ ∞

0
dE g(E) ln

(
1 + e−(E−µ)/kBT )

(2)

where kB is Boltzmann’s constant, T is the temperature and µ is the electronic chemical
potential specified by the macroscopic electrodes. Our aim is to expand � up to second order
in the coefficients b(q) characterizing the deformation. As we will show, this yields

�[b] = �[0] +
∫ ∞

0
dq α(q)[b(q)]2 + O(b3). (3)

The change in the grand canonical potential is of second order in b and contributions from
deformations with different q decouple. If the prefactor α(q) is negative for any value of q,
then � decreases under the deformation and the wire is unstable.

For an infinite cylindrical wire, the transverse motion is quantized, leading to the formation
of discrete electronic subbands. The total density of states is the sum of the contributions from
each subband (see figure 2): every subband begins to contribute at a threshold energy equal
to the energy of its quantized transverse motion with a sharp spike, falling off smoothly for
increasing energy. If the Fermi energy EF lies near one of these sharp peaks, certain small
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deformations of the wire can dramatically increase the density of states. According to (2), this
lowers the grand canonical potential, leading to an instability. On the other hand, if there is no
subband threshold sufficiently close to EF , the density of states will instead decrease with any
deformation, implying the existence of stable regions in the intervals between the instabilities
associated with the opening of each subband.

2. Quantum chaos approach

In order to examine this picture quantitatively, we use a semiclassical approach [3, 4], which
enables g(E) to be split into a smooth average contribution ḡ(E), referred to as the Weyl
contribution and an oscillatory part δg(E), whose average value is zero:

g(E) = ḡ(E) + δg(E). (4)

The Weyl term ḡ contains terms proportional to the volume of the nanowire and to the area
and curvature of its surface: ḡ(E) = (1/EF )g̃(E/EF ), where

g̃(x) = x1/2

2π2
k3
FV − 1

8π
k2
F S +

x−1/2

6π2
kFK (5)

and kF = 2π/λF is the Fermi wavevector. The volume V , surface area S and integrated mean
curvature K can be calculated for arbitrary perturbations by simple geometric considerations.
The oscillatory part δg of the density of states is a quantum correction and may be calculated
in the semiclassical approximation as a sum over all periodic classical orbits of the system
[3, 4, 16, 17, 29–31].

Figure 3. Classical periodic orbits of an electron in a plane perpendicular to the z-axis, labelled
(v,w), where v is the number of vertices and w the winding number.

Let us first consider an undeformed cylindrical wire. Each periodic orbit lies in a plane
transverse to the wire’s axis and there is a correspondence to the orbits [4] in a circular billiard
(see figure 3). Note that the action Svw of each orbit is invariant under both translations of
the orbit parallel to the z-axis and rotations about the z-axis. In a system with continuous
symmetries, when taking the trace of the electron Green’s function to calculate the density
of states, one must first integrate exactly over these symmetries [4, 29] before employing the
semiclassical (stationary phase) approximation. For electrons in a cylinder of length L, one
obtains the following trace formula:

δg(E) = mL

πh̄2

∞∑
w=1

∞∑
v=2w

fvwLvw

v2
cos

(
Svw(E)

h̄
− 3vπ

2

)
(6)
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wherem is the electron mass, v and w are defined in figure 3, fvw = 1 + θ(v− 2w) counts the
discrete degeneracy of the orbit under time reversal, Lvw = 2vR0 sin(πw/v) is the length of
a periodic orbit and the action Svw/h̄ = kFLvw

√
E/EF .

When the wire is deformed, the translational symmetry is broken and we use a semiclassical
perturbation theory [30, 31] to calculate δg. This theory assumes that for small perturbations,
the amplitudes and topology of the unperturbed orbits can still be used in (6), but that the
lengths of the orbits—and hence their actions—change. The trace formula becomes

δg(E) = m

πh̄2

∞∑
w=1

∞∑
v=2w

fvw

v2
Re

{
ei(Svw/h̄−3vπ/2)

∫ L

0
dz (Lvw +%Lvw) ei%Svw/h̄

}
(7)

where %Svw/h̄ = kF%Lvw
√
E/EF and

%Lvw = 2v sin(πw/v)(R(z)− R0) (8)

which may be expressed in terms of the perturbation coefficients using equation (1). Combining
this result for δg with (5), it is straightforward to calculate the density of states up to second
order in the coefficients b(q) for a deformed wire. The result can be integrated to obtain the
grand canonical potential, which indeed has the expansion (3).

3. Stability analysis

Let us first discuss the stability of a nanowire at zero temperature. Figure 2 shows the stability
coefficient α (lower diagram) and the density of states at the Fermi energy (upper diagram)
as functions of the radius of the unperturbed wire. The wavelength of the perturbation was
taken to be qR0 = 1, the critical wavelength for stability in Plateau’s classical analysis of a
body under the influence of surface tension. In addition to surface tension, the present model
for � has a curvature energy, which enhances the instability for small R0 and an oscillatory
component associated with the opening of successive subbands as R0 increases. As discussed
above, α has sharp negative peaks—indicating strong instabilities—at the subband thresholds,
where the density of states is sharply peaked. Under surface tension and curvature energy
alone (broken curve in figure 2), the wire would be slightly unstable at the critical wavevector
qR0 = 1, since the curvature term is negative. However, the quantum correction is positive in
the regions between the thresholds to open new subbands, thus stabilizing the wire. Since the
oscillatory contribution to α is independent of q, we find that regions of stability persist for
arbitrarily long wavelength perturbations, indicating that an infinitely long cylindrical wire is
a true metastable state if the radius lies in one of the windows of stability.

With these results, we can construct the zero-temperature stability diagram for the wire (see
figure 4(a)). In contrast to Plateau’s classical stability analysis, an additional quantum length
scale arises here, namely the Fermi wavelength λF . The stability problem is now determined
by two dimensionless parameters: qR0 and kFR0. In figure 4, regions of instability, where
the coefficient α(q) is negative, are shaded grey, while the stable regions are shown in white.
Note that many of the white regions of stability persist all the way down to q = 0. The
multistability of the system, indicated by the alternating stable and unstable stripes, reflects
commensurability effects between λF and R0.

We note that in addition to the axially symmetric modes considered here, which are the
sole unstable modes in the classical limit, perturbations which break axial symmetry may also
become unstable near the subband thresholds. However, these Jahn–Teller-like modes [15]
are likely to be less unstable than the axisymmetric modes and will not destroy the regions of
stability shown in figure 4(a).
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Figure 4. Stability diagram for cylindrical nanowires at two different temperatures. White areas are
stable, grey unstable to small perturbations. The quantized electrical conductance values G of the
stable configurations are indicated by bold numerals in (a), withG0 = 2e2/h. Right vertical axis,
corrected Sharvin conductance GS . Dotted curve, stability criterion in the Weyl approximation.

4. Conductance magic numbers

The electrical conductance G of a perfect cylindrical nanowire is quantized [12] in units of
G0 = 2e2/h. The quantized conductance values of the stable cylindrical configurations are
indicated by bold numerals in figure 4(a). For comparison, the right vertical axis of the figure
is labelled with the corrected Sharvin conductance [12]

GS =
(
kFR0

2

)2 (
1 − 2

kFR0

)
(9)

which gives a smooth approximation to G/G0. The conductance values of the stable
configurations are somewhat analogous to the magic numbers of enhanced stability in atomic
nuclei [4] and metal clusters [4, 5]. An important distinction is that the magic numbers in
nuclei and clusters refer to the number of fermions in a finite system, while we consider an
infinite, open system, with magic numbers describing the number of conducting transverse
modes [13] which hold the wire together. The number of conducting modes is approximately
equal to the number of atoms which fit within a cross section of the wire.

The integer magic numbers identified here must be distinguished from the concept of
‘magic wire configurations’ proposed by van Ruitenbeek and others [15, 32, 33]. The latter
represented discrete minima of the energy per unit volume of a jellium wire as a function
of its cross sectional area, but the stability with respect to deformations with q > 0 was
not considered. A similar scenario was advanced in [6] based on a partial summation of the
periodic orbits in the expression for � itself. While the theoretical results of [6, 15, 32, 33]
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seem to imply that stability occurs only for a discrete set of radii, of measure zero, our analysis
finds stability with respect to small perturbations over broad intervals of radius. Furthermore,
the very existence of discrete energetic minima of the type discussed in [6, 15, 32, 33] depends
sensitively on the numerical value of the surface tension in the model; for example, they do not
occur whatsoever in the free-electron model at constant volume for G > G0. In contrast, the
finite windows of stability in our analysis are robust with respect to variations of the surface
tension.

5. Comparison with experiments in alkali metals

The sequence of magic numbers G/G0 = 1, 3, 5, 6, . . . is consistent with the observation of
conductance quantization in alkali metal point contacts [10]. Recently, conductance histograms
for sodium nanowires with pronounced peaks up toG/G0 ∼ 100 were obtained by Yanson et al
[6]. They argued that these peaks could not be understood based on conductance quantization
alone, but rather reflected energetically preferred wire configurations. In order to construct
a theoretical conductance histogram, we need to know the a priori probability of occurrence
of a nanowire of a given cross sectional area. Here, we make the simplest hypothesis: that
nanowires of different cross sectional areas occur with equal a priori probability if stable and
with zero probability otherwise. On this hypothesis, the relative probability of observing a
contact with a given quantized conductance value is proportional to the width %GS of the
corresponding stable region, GS being a dimensionless measure of the contact area.

The conductance histogram from [6] taken at a temperature of T = 80 K is reproduced
in our figure 5(a). For comparison, the theoretical magic numbers at the same temperature
are plotted as vertical bars, with height equal to the width %GS of the corresponding stable
region. Unlike the idealized wires in our analysis, the experimental wires are of finite length
and contain imperfections. Thus the peaks in the experimental histogram are shifted [14] below
the theoretical integer values due to backscattering and are broadened [14] due to tunnelling,
disorder-induced conductance fluctuations and inelastic processes. Furthermore, the relative
heights of the peaks may be influenced by dynamical as well as energetic effects; in particular,
the peak at G = G0, which is quite pronounced at the lowest temperatures [6, 10], is absent
from the experimental histogram at T = 80 K—presumably indicating that thermally activated
processes lead to the rupture of this metastable configuration.

While the first four theoretical peaks atG/G0 = 1, 3, 5, 6 can be identified unambiguously
with the narrower peaks in the low-temperature data of [6, 10], it is not entirely clear whether
one can match up the broad peaks in the 80 K experimental histogram with individual theoretical
magic numbers. In particular, there appears to be fine structure in the theoretical histogram
which is not present in the 80 K histogram, possibly because it is obscured due to broadening.
In order to see whether the theoretical histogram nonetheless correctly describes the gross
features of the experimental histogram, it is useful to take the Fourier transforms of the two
histograms, singling out the contributions of the shortest periodic orbits.

The actions of the periodic orbits are proportional to the radius of the wire and hence
are approximately proportional to the square root of the conductance, by equation (9). The
contributions of the various periodic orbits to the conductance histogram can thus be extracted
[34] by taking a Fourier transform with respect to

√
G/G0. The Fourier power spectrum

of the theoretical conductance histogram is shown as a full curve in figure 5(b), where all
magic numbers up to G/G0 = 207 were included. It shows clear peaks corresponding to the
three shortest periodic orbits. For comparison, the experimental Fourier spectrum for sodium
nanowires at 90 K obtained by Yanson et al [34] is shown as a broken curve. The experimental
spectrum contains two broad peaks, one centred at the frequency of the diameter orbit and
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Figure 5. Magic numbers: theory and experiment. (a) Full curve, conductance histogram for
sodium nanowires at T = 80 K = 0.002TF , reproduced from [6]. Vertical bars, quantized
conductance values of the metastable nanowire configurations in the free-electron model at the
same temperature. The height of each bar is equal to the width %GS of the corresponding stable
region (cf figure 4(a)). (b) Full curve, Fourier power spectrum of the theoretical conductance
histogram (vertical bars in (a)), displaying the dominant contributions of the three shortest periodic
orbits in equation (7). Broken curve, Fourier power spectrum of the conductance histogram for
sodium nanowires at T = 90 K, reproduced from [34]. Note that the theoretical Fourier spectrum
does not change significantly between 80 and 90 K.

a second which spans the frequencies of the triangle and square orbits. The experimental
peaks in figure 5(b) are broader than the theoretical peaks since the oscillatory structure in
the experimental histogram is damped for G/G0 > 50. The widths of the theoretical peaks,
in contrast, are determined by the maximum conductance included, max{G/G0} = 207;
increasing this cut-off decreases the widths of the peaks. We have simply taken a cut-off larger
than the maximum measured conductance, so that the cut-off does not introduce any artefacts
in the theoretical Fourier spectrum. The overall vertical scale of the power spectra shown
is arbitrary, so a comparison between theory and experiment must be based on the relative
spectral weights of the various peaks. In both spectra, the weight of the diameter orbit is
roughly half the combined spectral weights of the triangle and square orbits—a rather good
agreement between theory and experiment.

6. Classical limit

At zero temperature, the pattern of stable regions separated by unstable stripes shown in
figure 4(a) continues up to arbitrarily large radii. However, at any finite temperature T , the
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quantum oscillations in α are smoothed out and the classical stability criterion qR0 > 1 is
recovered asymptotically for sufficiently large radii. The crossover from the T = 0 result
to the classical limit occurs when kBT ∼ EF (G0/G), i.e. when the thermal energy kBT is
comparable to the average transverse level spacing. Figure 4(b) shows the stability diagram
for T/TF = 0.05, where TF = EF/kB is the Fermi temperature. One sees that the stability
boundary indeed begins to cross over to the classical line qR0 = 1 for GS > 20.

In figure 4(b), there are no true metastable configurations with GS > 25 ∼ TF /T ,
indicating that all thicker wires would be dynamically unstable (like a column of fluid)
at this temperature, once the electronic shell effects have been smoothed out. However,
TF = 3.75 × 104 K in sodium, so multistability from electronic shell effects can be expected
to occur in sodium contacts with G/G0 � 125 up to at least 300 K.

7. Discussion

It should be pointed out that thermal averaging is not the only mechanism that can suppress
electronic shell effects. Disorder also tends to smooth out the sharply peaked structure in the
density of states, so that one can expect a reduction of shell effects when the diameter of the wire
exceeds the mean free path. Furthermore, the tendency of the positive ions to order themselves
into regular arrays [23, 24] will certainly affect the stability of metallic nanowires. Indeed,
pioneering theoretical investigations [7–9] of the dynamics of nanowires focused exclusively
on the arrangement of the ions. Based on the relative importance of electronic shells and
crystal structure in metal clusters [5], one would expect electronic shell effects to dominate the
energetics of very thin wires, particularly in the alkali metals, with crystal structure becoming
increasingly important for thicker wires and for metals where the bonding is more directional.

Although conductance histograms of gold nanowires [26] do not exhibit the sequence of
magic numbers predicted here and observed in alkali metals, there is some evidence that gold
nanowires can otherwise be adequately described using the free-electron model [13, 14, 18]. It
is thus worthwhile to speculate about a possible electronic origin for the remarkable stability
of wires of individual gold atoms. Linear chains composed of four to seven gold atoms
suspended between two gold electrodes, with a conductanceG = G0, were found to be stable
in the laboratory for hours at a time [27, 28]. Given that such a configuration has an enormous
surface energy, its stability is at first sight surprising. However, in our free-electron model,
we find that an infinitely long wire with a conductance of G0 is indeed stable with respect to
small perturbations.

Our results may also be relevant to explain the observed stability of gold wires with larger
radii [23, 24]. The atomic-scale structure of these wires exhibits a remarkable diversity, ranging
from helical, multishell structures [24] to crystalline structures with surface reconstruction
[23]; but a common factor in the observed stable structures is that they are almost perfectly
cylindrical. A direct comparison to our theoretical stability analysis would be facilitated by
measurements of the conductance of the stable wires, which have not yet been carried out.
However, a rule of thumb is that the conductance G/G0 of a metal wire made of monovalent
atoms is roughly equal to the number of atoms in the cross section. Thus the hexagonal
prism structure with a cross section of 30 atoms determined in [23] does correspond to a
stable configuration in our analysis (vertical bar at G/G0 = 30 in figure 5(a)). Similarly, the
thinnest of the helical wire structures determined in [24], with a cross section of eight atoms,
also corresponds to a stable structure in our analysis, while the two thickest wire structures
determined in [24], with cross sections of 22 and 24 atoms, respectively, appear to straddle the
predicted island of stability at G/G0 = 23. Further work is needed to elucidate the interplay
of atomistic stacking effects and electronic shell effects in these structures.
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Finally, let us comment on the dynamical evolution of a nanowire under elongation or
compression. Consider stretching a nanowire that is initially in a stable configuration (white
areas in figure 4). Under elongation, the radius of the wire decreases, so that one moves
downward on the stability diagram. When a stability boundary is encountered, it becomes
energetically (and dynamically) favourable for the wire to deform spontaneously, until another
stable configuration of smaller radius is reached, thus causing the conductance to jump abruptly
from one magic number to a smaller one and conversely under compression. This scenario is
consistent with the claim [25] that the structure of a metallic nanowire undergoes a sequence
of abrupt changes as a function of elongation or compression. The finite widths of the unstable
tongues in figure 4 also provides a possible explanation for the hysteresis [25] observed in the
conductance as a function of elongation: the critical radius at which the wire’s conductance
jumps between neighbouring magic numbers is different, depending on whether the tongue is
approached from above or below, i.e. depending on whether the wire is stretched or compressed.
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