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It has long been conjectured that hydrodynamic interactions between beating eukaryotic flagella

underlie their ubiquitous forms of synchronization; yet there has been no experimental test of this

connection. The biflagellate alga Chlamydomonas is a simple model for such studies, as its two flagella

are representative of those most commonly found in eukaryotes. Using micromanipulation and high-speed

imaging, we show that the flagella of a C. reinhardtii cell present periods of synchronization interrupted

by phase slips. The dynamics of slips and the statistics of phase-locked intervals are consistent with a low-

dimensional stochastic model of hydrodynamically coupled oscillators, with a noise amplitude set by the

intrinsic fluctuations of single flagellar beats.
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One of the truly remarkable discoveries in biology is a
connection between the process that determines the left-
ward position of the heart in a human body and the swim-
ming of microscopic green algae. The link is provided by
flagella [1,2], the microscopic appendages whose beating
propels algae [3] and which also set up circulating flows in
a developing embryo that establish the left-right asymme-
try of its body plan [4,5]. Flagella play an important role in
many aspects of life, from fluid transport in the reproduc-
tive system and the respiratory tract, to mechanical and
biochemical signal transduction in the kidneys and eyes.
The coordinated motion of groups of flagella, from pairs to
thousands, is often crucial to the successful performance of
these functions [6].

Observations of nearby sperm flagella beating in phase
led Taylor [7] to consider the simplified problem of two
nearby waving sheets in Stokes flow. He found the intuitive
result that viscous dissipation is minimized for a vanishing
phase shift between the two imposed waves of displace-
ment. However, this model does not provide a mechanism
by which bodies with slightly different frequencies, start-
ing at an arbitrary initial condition, would evolve to syn-
chrony, a fundamental requirement for the robust
synchronization observed in vivo. Within a phenomeno-
logical description of active bending moments, Machin [8]
showed that a coupled pair of flagella can indeed synchro-
nize; while the mechanochemical details of synchroniza-
tion are still under active investigation, the emerging
theoretical consensus is that hydrodynamic interactions
are indeed the root cause [9–13].

Tests of theories of synchronization require model or-
ganisms capable of precise visualization, with broadly
representative biology. It has become clear [6] that the
biflagellate alga Chlamydomonas reinhardtii [Fig. 1(a)] is
ideally suited to these studies. C. reinhardtii has a sphe-
roidal body �5 �m in radius and a pair of flagella

�12 �m long, extending from one end. The two flagella
are termed cis and trans based on their location with
respect to the eye spot, a primitive photosensitive organ-
elle. They typically beat at �50 Hz in a synchronous
breaststroke with a small phase difference, and this dy-
namics is regulated by the cell to move to areas with
optimal levels of light and essential chemicals, and to avoid
sinking. Kamiya and Hasegawa [14] showed that the two
flagella of demembranated C. reinhardtii ‘‘cell models’’
have distinct beat frequencies. Although cells so treated
may not be fully representative of the native form [15],
these findings suggest that in living cells, some mechanism
must be in place to ensure synchronous beating. At the
same time, Rüffer and Nultsch [16] used short (�2 s) high-
speed movies to show tantalizing evidence of a complex
dynamics of beating flagella that is not captured by the
picture of synchronous breaststrokes.
Here, we explore the complex breaststroke beating in

detail, using high-speed video microscopy to analyze long
times series containing tens of thousands of beats. Our
results show that C. reinhardtii flagella pairs exhibit noisy
synchronization interrupted by phase slips. Well known in
the study of coupled oscillators [17], this phase diffusion in

FIG. 1 (color online). Experimental system. (a) A single cell of
Chlamydomonas reinhardtii held on a micropipette.
(b) Schematic of apparatus for visualization and micromanipu-
lation of cells.
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eukaryotic flagella has not been anticipated by theory.
Despite the complexity of this system, we find consistency
with a low-dimensional model of coupled noisy phase
oscillators and a coupling strength consistent with hydro-
dynamic interactions. These results show for the first time
the role of biochemical noise in the dynamics of eukaryotic
flagella.

C. reinhardtii (UTEX 89 [18]) was grown axenically in
standard Volvox medium (SVM) [19] with sterile air bub-
bling, in growth chambers (Binder, Germany) set to a cycle
of 16 h in cool white light (�4000 lux) at 28 �C and 8 h in
the dark at 26 �C. Cells were harvested in a light period
within their exponential growth phase (�106 cells=ml) and
immediately transferred to the sample cell [Fig. 1(b)],
where observation started after 30 min to allow for accli-
matization. Individual cells were held by gentle suction
provided by a manual microinjector (Sutter Instrument
Co., USA) connected to micropipettes with 2–4 �m di-
ameter tip, hosted in pipette holders (World Precision
Instruments, USA). Pipettes were prepared with a puller
(P-97, Sutter) and reshaped with a microforge (DMF1000-
2, WPI). The holders were mounted on custom stages
providing free rotation around the pipette axis, and fit on
motorized micromanipulators (Patchstar, Scientifica, UK).
This setup allows precise positioning and reorientation of
the captured cells for optimum visualization. We used
bright field illumination on a Nikon TE2000-U inverted
microscope with a Nikon Plan Fluor ELWD 40� objective,
which allows imaging of cells further than 1 mm from the
chamber’s surfaces, minimizing wall-induced hydrody-
namic effects on the flagella. A long pass interference filter
with a 10 nm transition ramp centered at 620 nm (Knight
Optical, UK) was used to avoid any phototactic response
[20]. Movies up to 3 min long were captured by a high-
speed video camera (Phantom V.1, Vision Research, USA)
at 500 fps, and transferred to disk for processing and
analysis with custom MATLAB routines.

Synchronization and phase slips are best viewed normal
to the plane containing the two flagella (Fig. 2). Each
passage of the left (L) or right (R) flagellum across a small
interrogation region corresponds to a peak in the intensity
signal XL;RðtÞ, with consecutive peaks separated by a full

beating cycle. We characterize this periodic motion with a
phase �L;RðtÞ, which advances by 1 between successive

peaks, with intermediate values estimated by linear inter-
polation. The phase difference, �ðtÞ ¼ �LðtÞ � �RðtÞ, will
then fluctuate around a constant value during synchrony
[21]. Occasionally, one of the two flagella accumulates an
extra beat and �ðtÞ slips by one unit [Figs. 2(a)–2(l)]. The
time series in Figs. 2(m) and 2(n) show further that the
single extra cycle of a phase slip is completed in �15 beat
periods or �0:3 s. This beating dynamics is characteristic
of freely swimming cells as well [16]. Results from 21
different individuals observed over a much longer time
scale reveal that the same organism can have slips of either

sign [Fig. 3(a)], and that the occurrence of these events is
not regular, but rather is characterized by a wide distribu-
tion of waiting times [Fig. 3(b)]. Stochasticity clearly plays
an important role in the observed dynamics.
We model the synchronized flagella pair as two phase

oscillators, �L;R, evolving with distinct intrinsic natural

frequencies, �L;R, and coupled through an antisymmetric

function of the phase difference,

_�i ¼ �i þ �� sin½2�ð�j � �iÞ� þ �iðtÞ; (1)

where i, j 2 fL; Rg. The Gaussian white noise �i, with
h�iðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼ Teff�ðt� t0Þ�i;j, is a surro-

gate for noise in a single flagellum’s dynamics. These
equations reduce to a stochastic Adler equation [17],

_� ¼ ��� 2�� sinð2��Þ þ �ðtÞ; (2)

where �� ¼ �L � �R, and � ¼ �L � �R satisfies
h�ðtÞ�ðt0Þi ¼ 2Teff�ðt� t0Þ. Equation (2) describes the
overdamped motion of a particle diffusing on a tilted wash-
board potential Vð�Þ ¼ ����� � cosð2��Þ [Fig. 3(a),
inset] [22]. In this model, the noisy dynamics during
synchronization is represented by fluctuations around local
minima in V, with the autocorrelation of � easily shown to
decay as CðtÞ ¼ C0 expð�t=�cÞ. This is indeed observed
experimentally (Fig. 4). Noise-induced hopping events
bring the system over to adjacent minima and represent
phase slips. The presence of a bias �� implies that the ratio
of forward to backward jumping probabilities Pþ=P� is
not unity. For each experiment, we used these three ob-
servables (C0, �c, Pþ=P�) to estimate the three parame-
ters of the stochastic model, Teff ¼ C0=�c, �� ¼
Teff logðPþ=P�Þ, � ¼ 1=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2 þ 1=ð2��cÞ2
p

[23].
From analysis of all available data in the synchronized

FIG. 2 (color online). A phase slip in the beating of C. rein-
hardtii flagella. (a)–(l) Individual image-processed movie frames
at times indicated in panel n. (m) Phase difference �ðtÞ between
flagella as a function of time. (n) Extracted signals from the
interrogation areas [seen in (b)] near each of the two flagella.
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regime, we find hTeff= ��i ¼ 0:006 (with a range 0.002–
0.012), h��= ��i ¼ 0:008 (0.001–0.02) and h�= ��i ¼ 0:008
(0.003–0.015), and h ��i ¼ 50:6 Hz. The large bending ri-
gidity of the flagellar axoneme, 	 ’ 4� 10�22 Nm2, im-
plies that thermally driven fluctuations are smaller than
10 nm, well below our experimental resolution. Their
contribution to the measured observables, in particular,
the noise strength, is therefore negligible.

An estimate of the hydrodynamic coupling between two
idealized flagella [24] is �est ’ 
�r�R�L. Here, �r is a time
scale for decay of flagellar displacements away from the
unperturbed periodic cycle. The validity of a model of

coupled phases like (2) rests in part on this relaxation
time being much shorter than the flagellar beat period,
1= ��� 20 ms. In the limit of small perturbations, �r can
be estimated from the viscosity � of the surrounding fluid,
the flagellar bending rigidity 	, width a, and length l as
�r ¼ 3��al3=	� 5 ms, thus satisfying the above require-
ment. The prefactor 
 depends on the density of the
flagellar arrangement [24]; in our experiments, 
 ¼
0:025. These values yield a coupling strength �est= ���
0:006, which compares very well with the experimental
results. This is a strong indication of the importance of
interflagellar hydrodynamic interactions. Either biochemi-
cal or mechanical coupling through the cell wall or the
cytoskeleton could very well play an important role, but
hydrodynamic coupling alone would be sufficient to in-
duce the observed synchronization.
Despite the coupling, during synchrony the two flagella

carry a signature of their intrinsic frequency difference, in
that Eq. (2) predicts the existence of a small phase-lag
between the two flagella, given by the fractional part of the
value of the potential minima, �0 ¼ arcsinð��=2��Þ=2�.
Indeed, the largest computed value of ’1=11th of a cycle is
in excellent quantitative agreement with previous observa-
tions [16]. From the average values of the parameters of the
model, it is also possible ([22], Sec. 7) to predict the
average duration of a synchronized period to be h�iest ¼
2:0 s, which agrees well with the value extracted from the
distribution function of all synchronous periods from the
21 experiments, h�iexp ¼ 1:92 s [Fig. 3(b)]. Synchrony is

interrupted by slips whose duration is also consistent with
the model. A series expansion of the potential Vð�Þ pre-
dicts exponential growth of small perturbations near the

FIG. 4 (color online). Comparison of single flagellum noise
levels before (y axis) and after (x axis) partial deflagellation. In
the latter case, the noise can be extracted from the distribution of
beating periods (lower inset), and compared to the value esti-
mated from the autocorrelation of the coupled dynamics (upper
inset). Only experiments in which the isolated flagellum had a
long period of uniform behavior are shown (7 out of 14).

FIG. 3 (color online). Dynamics and statistics of phase slips.
(a) Long time series of �ðtÞ illustrating forward and backward
slips. Inset: sketch of the tilted washboard potential used in the
model. (b) Probability distribution of synchronization times and
its cumulative distribution function (cdf) showing approximate
exponential decay. (c) �ðtÞ for 10 slips events, the average slip
(dashed line) and the integrated trajectory from the deterministic
part of the model (solid line) for ��= �� ¼ 0:004, �� ¼ 47 Hz, and
�= �� ¼ 0:015; �slip � 0:22 s.
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unstable maxima with a time scale �slip ’ 1=2���
0:2–1:0 s, consistent with our observations of slips’ dura-
tions. Indeed, in all experiments, the evolution from a
maximum to an adjacent minimum can be determined by
integration using the estimated parameters and shows very
good agreement with the average slip along the entire
trajectory [Fig. 3(c)].

These observations suggest the need to characterize the
beating of individual flagella. While the precise mecha-
nism coordinating the activity of axonemal motors is still
unknown [11–13], the very molecular nature of the motors,
with their associated reaction rates and attachment proba-
bilities, suggests that the beating process is intrinsically
stochastic. However, in contrast to our advanced under-
standing of noise in the rotary motor of bacterial flagella
[25], our knowledge of eukaryotic flagellar noise is poor.
As a first step, we used a second pipette to remove one
flagellum to study the other in isolation, starting immedi-
ately after removal to minimize the influence of natural
intracellular processes leading to flagellar regrowth [26].
When successful, this crude process leaves the other fla-
gellum beating at a reasonably uniform frequency, and
offers the opportunity to study the isolated dynamics of a
flagellum just after having observed its coupled behavior.
The noise level of an isolated flagellum can be extracted
from the mean and variance of the distribution of beating
periods as Teff= �� ¼ varðTÞ=hTi2. The results (Fig. 4) sup-
port the inference that the coupled dynamics’ noise comes
mainly from that intrinsic to the individual flagella,
although other contributions cannot be ruled out.

We have shown that pairs of beating eukaryotic flagella
exhibit noisy synchronization described by a simple phase
oscillator model, with a coupling consistent in magnitude
with that expected from hydrodynamic interactions.
Despite its simplicity, the model successfully predicts in-
terflagellar phase-lag during synchrony, the average length
of a synchronous period, the average trajectory during a
slip event, and it is consistent with results from single
flagella. Elsewhere, we report the observation that occa-
sionally the two flagella beat at different frequencies for
extended periods and its relation to the run and tumble-like
swimming of C. reinhardtii [23]. Issues for further experi-
mental study include the biological importance of slips, the
role of flagella length on synchronization, and simulta-
neous imaging of synchronous beating and intraflagellar
calcium dynamics [27]. One of the main theoretical chal-
lenges is to explain the origin and magnitude of the ob-
served noise.
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