Computational
Projects

Lecture 4: Solution of ODEs

Note: this lecture will cover material likely useful for
a core IB project (and several other IB and Il projects)

Introduction

Computers are often used for solving ordinary differential equations
(ODEs) as well as partial differential equations

For this lecture, we consider a simple class of ODEs: consider x € R
and some (unknown) function y: R — R.

We are given a function f, an interval [a, b] and an initial condition y,

such that q
y _
T = f(z,y)

and y(a) = yo.

We seek a numerical approximation to the function y, for values of z in
the interval [a, V]

Euler’s method

A simple method for doing this is called Euler's method

To=a T, T1,L2y ..., TN TN =0b
Choose an increasing sequence of N points, in the interval [a, b]

Simplest choice: equally spaced points

T, = a+ nh, h=

Notation
We will compute a sequence Yy, Y, ..., Yy such that Y, is our
estimate of y,, = y(z,)
Position Exact solution Approx solution
To=a Yo = y(a) Yo =yo
r1=a+h {1 Y;
T, = a+nh Yn Y,
mN:a+Nh:b yN:y(b) YN




Euler’s method

The Euler method takes
Yn+1 = Yn + hf(xna Yn)

... think of Taylor’s theorem
_ Ys .
gradient f(z1,Y1)

...Wwe are making a piecewise-linear
mn Y; approximation to y.

Simple ODE example

Consider dy o
oy = (@ y) =2y

Exact solution, for any constant C

y(gj) = 22 (e.g. by separation of variables)
T

Note the 2 asymptotes when = = +V/C

Initial condition:

Euler method -- MATLAB Function

function [x, y] = eulerSolve(xstart, ystart, xend, h)

% eulerSolve: return data points using Euler's method to solve y' = xy"2
xstart, ystart determine the initial condition

xend sets the end point and h is the step size

returns 2 column vectors, estimates of x and y(x) at n points

00

o0

00

% the "round" function gives the closest integer to some real number

n = round( (xend-xstart+eps)/h);

% adjust h so that the range is exactly n*h

% (to ensure that we have exactly x(n+l) = xend

hTrue = (xend-xstart)/n;

x(1) = xstart; . mod\fY

y(1l) = ystart; ‘oht be nice - colves

... Mg 50 dhat it S

for i=1:n eu\erso\l = KX»\/) er\’\Ct.\O\'\
yprime = x(i)*y(i)"2; (dyld)q '\\’\Put' 1o th \e
y(i+l) = y(i) + hTrue*yprime; heref\ an Se h examp
x(i+l) = x(i) + hTrue; whe thebnary

end (as n

return

Example: eulerSolve.m

Effect of step size
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We plot the exact solution and the numerical solution from Euler’s
method. As h — 0 we approach the exact solution.




Accuracy

There are several ways to assess the accuracy of our numerical
estimates

The simplest quantity to consider is the error at step n,
En = Yn — Yn

We can also consider the local error which is the error that we
make in a single step of the algorithm, under the assumption that
our previous steps were all exactly correct.

Suppose that we already computed Y,,_;. Let () be the solution
to our original ODE, with initial condition g(z,—1) = Y, —1.

The local error is

en =Y, — y(xn)

Local error: Euler

If e,, = O(hP*1) as h — 0 (for fixed x,,_1,Y,,_1) then we say that we
have an “order p method”.

Assume that the solution 7 is “nice enough” (e.g. analytic)
From Taylor’s theorem
§(xn) = §(@n_1) + hif (xn_1) + %h2ﬂ”(fn71)

for some &,_1 € [x,—1, Tp]-

en =Yy — §(wn) Y ﬂ(l‘n)
:‘ [Kl—l + h’f(xn—lvyn—l)]‘*‘ [Y;L—l + hf(‘rn—lyyn—l) + %hQ?j”(fn—l)]‘
= =302 (En1) = O(W?)

Therefore, p=1: the local error of Euler’s method is order 1
(for "nice enough" ODESs)

Global error

Let Y (z, h) be our piecewise-linear estimate of y(z), obtained with step
size h. Then E,, = Y (x,, h) — y(x,) is the global error (from before).

Also let E(x,h) =Y (z,h) — y(x) so we have also E,, = E(z,, h).

Rough argument:

To estimate E,,, we must consider n steps of the algorithm. It
seems reasonable to assume that the error on each step is similar
to the local error, hence O(h?PT1).

Since we need to make x/h steps in order to reach the point z, we
guess that
E(z,h) = O(z/h x h?T1) = O(hP)

(taking h — 0 at fixed x)

Global error

We gave a (rough) argument that if the local error is O(hP*1) then
the global error is O(h?).

This argument is correct (and can turned into a rigorous proof) if f is
bounded, continuous, and satisfies a Lipschitz condition: there exists
some finite L such that for all z, y, z

[f(z,y) = f(z,2)] < Ly — 2|

(but note f is not bounded in our example...)

Recall an “order p method” has a local error that is O(h?*1). In this
case it has a global error that is O(hP). . . this justifies the name. ..




Computing errors

The example programfeulerTest .m|{generates the graphs that
appear in the next few slides
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10 ——IE(1,h)l = ly(1)-Y(1,h)l We solve our original ODE
2| Y (x) = f(z.y) with

flz,y) = zy* and y(0) = 1
1074
. We compute the global error
10
atz =1
108
Data are consistent with
1070 E(1,h) = O(h), except for
round-off error at very small h
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 graph is eulerErrl.pdf

Round-off in ODEs

In each step of the Euler method, we introduce a round-off error (on
Y,,) of the order of the machine epsilon ¢

In the worst case, all these errors would have the same sign. In
computing y(z) we have x/h steps so the global error on y(z) due
to round-off is then (xz/h) x O(e)

This error would be small for the values of 1 where one typically uses
the method, but it diverges at small & so it limits the maximal accuracy.
(This can be a good reason to use a higher-order method.)

If one assumes that the signs of the round-off errors are completely
random, one predicts instead an error of order |z/h|*/? x O(¢). This
is smaller but still divergent at small A.

Testing the order of a method

To see how our method is performing, we should measure
E(x,h)...but of course we do not usually know the true solution y(z).

If E(z,h) = O(hP) then
Y(xz,h) =y(x) + Aa)hP + ...
This means that

Y (2, h) = Y(x,h/2) = (1 -27P) X(x)h? + ...
SO

log |Y(xz,h) — Y(x,h/2)] = plogh + log [(1 - 2_p) \)\(:E)H + ...

A plot of log |Y (x,h) — Y (z, %)\ against log h has gradient p (for small h)

Computing errors

If we don’t know the exact solution, we can also estimate the order
of the method by comparing step sizes h and h/2

10° ‘ ‘
——1Y(1,h) - Y(1,h/2) |
——const*h

graph is eulerErr2.pdf
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h
Data are consistent with log |Y'(1,h) — Y (1,h/2)| = log h + O(h°),
that is p = 1. (Again, round-off problem at very small h)




... an improved estimate

If we know p and we compute approximate solutions using two
different values of h, we can “extrapolate to h = 0” in order to get a
more accurate answer

Assuming
Y(x,h) =y(x) + Mz)h? + O(hPT)

we can define
2PY (x,h/2) — Y (x, h)

2r —1

YR(x, h) =
and show that
Yr(z,h) = y(z) + O(RP*)

This is called the Richardson method. It is more accurate, by a
factor of order h.

Computing errors

Compare the error on the Richardson estimate with the regular

estimate. ..
10° ‘ ‘
—— IYR(1,h)-y(1)I
2| —e—1Y(1,h) - y(1)!

107

——const*h
—— const * h?

In this case p = 1 so

4l
10 Yr(1,h) = 2Y(1,h/2) — Y(1,h)
10|
108}t
00l graph is eulerErr3.pdf
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Data are consistent with log |Yz(1, k) — y(1)| = O(h?).

What can go wrong?

If we want accurate solutions, we can try to design or analyse
higher-order methods. ..

For this course, a more important question is what can go wrong:
there are at least two things to worry about here. ..

(1) ODEs that are “not nice enough”

(for example, if f is not bounded or not Lipshitz then all our
arguments above can fail. . .)

see eulerExample2.m for some of the effects of the
asymptotes that appear at x = C in our simple example

(2) Stability — we can make statements about the limit 4 — 0 but in
practice we work at finite h. ..

Stability

Consider the differential equation

dy
2= )\
dx y
Exact solution
y = ype Moo

Euler’'s method
Yo=Y 1—h\Y,1=Y,_1(1 = A\h)

... hence
Y, =Yo(1 = Ah)"

So Y (x,h) = yo(1 — Ah)*/", at least for = = nh




Stability
We have
Y, = yo(1 = AR)", Y(x,h) = yo(1 — )\h)x/h

Can check that limy, o Y (x, h) = y(x), we get the exact solution
...seems ok

Clearly |<7+| = [1 — Ah|. For h < (2/)), the |Y;,| form a decreasing
sequence, consistent with the exact solution.

Ynt1
n

The problem comes if we take h > (2/)). In this case the |Y,,|
increase and the approximate solution Y (z, k) diverges
exponentially fast from y(x), as x increases.

This is an example of a 1st order method that becomes unstable
when & is not small enough.

Stability vs accuracy

If a method is pth order, this is a statement about the limiting
behaviour as h — 0, this is related to accuracy of the solution

This says nothing about the behaviour at finite h: the method might
be unstable in which case the error diverges

In “real-world applications” there is often a trade-off between
stability and accuracy: what is important in that specific application?

... today

a brief overview of ODE solution by a simple (Euler) method,
and associated errors...

... more complex methods certainly exist, see later courses
and also the computational projects themselves...

... hext lecture

a more complicated algorithm, to illustrate how to build up
programs from simple starting points...

... matrix inversion by LU decomposition




