Computational Projects

Lecture 7: Monte Carlo integration

Dr Rob Jack, DAMTP

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Numerical integration

Aim: Calculate area A of shaded
region

The outer square is Q = [0, 1]2.

We are given some function
f:Q — R and the shape is

S={reQ: f(x) >0}

Let xs(z) =1ifx € S and
xs(x) = 0 otherwise.

We want A = [xgdz.

Numerical integration

Aim: Calculate area A of shaded
region

Simple method:

Partition the square into smaller
squares of size h

The total number of these
squares is Nyt = 1/h?

Count the number of squares n
for which the central point is shaded

Estimate the area as
(n/Niot) = h3n

Numerical effort is O(h~2)

Scaling of errors depends on
the shape

Numerical integration

Aim: Calculate area A of shaded
region

The simple method is ok but it
gets very costly if we consider
shapes in high dimensional spaces

In dimension d, the numerical
effort to make a grid is O(h=%)

"Monte Carlo" method

Generate N random points in the
outer square

If n of them are in the shaded region
then estimate the area as

n
—A
N 0
where Ay is the area of outer square

Monte Carlo integration

The name "Monte Carlo" comes from the famous casino, it was
chosen because the method uses random numbers

It may seem like a bad idea to use a random process to estimate an
integral (the answer obviously depends on the random numbers that
we choose)

In fact such methods are used a lot. They have some nice properties:

On average, the method gives the right answer
E(estimated area) = A
The variance of the estimated area goes to zeroas N — ~
Var(estimated area) = A(1 — A)/N

(follows from the central limit theorem)

5

Monte Carlo integration

Let x; = 1 if the 4th random point is inside the chosen region
and zero otherwise

N
1
estimated area = — i
N2

Use linearity of the expectation and that E(x;) = A, we get

E(estimated area) = A

Since the random points are independent, we see that
Var(estimated area) = N x Var(y;/N).
Using also that x? = x; we get

A1 - A)

. 1
Var(estimated area) = NM —A?) = ~

6

Spheres and hyperspheres

We can take f(z) = 1 — ||z||? so that the shape is a quarter of a circle

Integral A = /4

Area of unit circle 44 =«

Now consider d spatial dimensions

Volume V; of a d-dimensional
hypersphere with unit radius can be
obtained as 244,

...where A, is the analogous integral
in d dimension

2d/2 _ ald=1)/2
(s forodd d then Vy = 75

For even d then V; = a/2)-6/2)(d/2)

7

Example program

function [estV,estFrac] = sphereVolMC(dim,nn)
$spherevVolMC : MC for hypersphere volume
% Monte Carlo estimate of volume of hypersphere in d dimensions
% outputs the volume and the fraction of the corresponding hypercube
estv = 0.0;
for i=l:nn
x = rand(dim,1); % column vector with 'dim' random numbers
xNorm2 = x' * x; % squared norm of vector
% (remember x' is transpose of x)
if (xNorm2 < 1)
estV = estV + 1;
end
end
estV = estV/nn;
% this is the integral (volume of one "quadrant")
estFrac = estV;
% mult by 2”dim to get the vol of the full hypersphere
estV = estV * 27°dim;
end

sphereVolMC.m , mcTest.m

Error analysis (random case)

In methods that use random numbers, there are two types of error

Random errors (or "statistical uncertainties") come from the specific
choice of the random numbers. The standard deviation (square root
of variance) is useful for quantifying them:

Random error = \/A(1 — A)/N = O(N~/?)

Systematic errors (or "bias") can sometimes mean that the method
does not give the right answer on average

E(estimated area) = A+ a

where a is the systematic error. In this case a = 0, the method is unbiased.

Evaluation of random methods requires analysis of both types of error

9

"Random" numbers

How does the computer generate random numbers?
"Anyone who considers arithmetical methods of producing random

digits is, of course, in a state of sin"
von Neumann, 1951

In computing, so-called random numbers are usually pseudo-random

The computer generates these numbers by a deterministic rule, which
is designed to mimic a sequence of i.i.d. random numbers

[Some computers can also use physical (hardware) devices to
generate "true" random numbers]

Random "seed"

The computer generates sequences of (pseudo)-random numbers by
a deterministic rule...

There are a finite number of possible sequences, we have to choose
which sequence to use.

This is done by "seeding" the random number, which means choosing
an integer (the "seed")

If we run the same program with the same seed, we get deterministic
(reproducible) output. (Useful for debugging)

If we use different seeds, we get different outputs. A common trick is
to use a seed related to the current date and time

mcTest.m

Other integrals

So far we estimated f[o 2 xsdz

It can be shown that if we have some f : [0,1]% — R then we can
estimate I = f[O 1 fdx as

. 1
Estimate of 7 = Zf(:ci)
where the z; are chosen independently at random from [0, 1]¢.

The variance of our estimate is
1

— f—1)?2dz
N [071](1()

... if this last integral is finite then the method is reasonable...

12

Hyperspheres in high dimension

What happens for integrals in high dimension d (eg d = 30)?

£d/2

For d even, we have Vy = {755 ~ = exp [—4 (logd — C)] with
C =1+ log(2m).

™
\(\g \\0
.. these are very small numbers when d is large \6\\(\ e

20°

For our method, the fraction of points inside the sphere is A; = 279V,
which is even smaller. ..

If there are very few random points inside the sphere then the method
will be inaccurate

Random error < tends to be very large if A4 is small

(Note: methods based on "grids" are also impractical in high dimension)

13

Importance sampling

"Most" of the high-dimensional hypersphere is close to the origin.
We can improve our method by putting more of our random points
near the origin

Define some function (density) p : [0,1]¢ — (0, c0) with Jio.aja pdz = 1.

Then write
A:/ Xsdx:/ p-ﬁdx
[0,1]4 [0,1]¢ P

If we choose our random points x; to be distributed with density p then

s

Estimate of A =

2 \

Importance sampling

We choose our random points x; to be distributed with density p, and

Y xs(ai)

1
estimated area = —
N

Use linearity of the expectation and that E, (%5 () A, we get
E(estimated area) = A

Since the random points are independent, we see that

).

Var(estimated area) = N x Var, (
Using also that x% = xs and [xsdz = A we get

. 1 1
Var(estimated area) = N/XS (p - A) de=C/N, C>0

15

Random points

How to generate random points with a large density near the origin?

One possibility: fix A > 0 and take v uniformly from [e=*,1]. Let

= loa(1/0)
Cumulative distribution function for u
1—e e
1—e? AN
Probability density function for u O £

Prob(u < a) = Prob(v > e™%) =

d
- _—P = (e
p(a) % rob(u < a) = Ce

with normalisation C = \/(1 —e™?).

Let every random point z; have d random Cartesian components, each
generated as an independent sample of u

16

Example function

function [x] = ranExp(dim,lambda)
%ranExp: random vector in hypercube with exponential density

o0

column vector with 'dim' random numbers (uniform from [0,1]

= rand(dim,1);

transform (elementwise) to random numbers in [exp(-lambda),l]
= exp(-lambda) + (l-exp(-lambda))*y;

this gives us random numbers with exponential density

= -log(y)/lambda; % note this is elementwise again

00 K00 K

kg

end

ranExp.m , mcImp.m

Importance sampling function

function [estV,estFrac] = sphereVolMCImpExp(dim,nn,lambda)
$sphereVolMCImpExp : MC for hypersphere volume with exp importance sampling
% ...

estV = 0.0;

for i=1l:nn
X = ranExp(dim,lambda); % random point with specified density
xNorm2 = x' * x; % squared norm of vector

if (xNorm2 < 1)
% compute also the density at the relevant point
this is the product of the densities of the independent components
rho = 1;
for i=1:dim
rho = rho * exp(-lambda*x(i)) * lambda / (l-exp(-lambda));
end

o

estV = estV + 1/rho;
end
end

estV = estV/nn;

% this is the integral (volume of one "quadrant")
estFrac = estV;

% mult by 2"°dim to get the vol of the full hypersphere

estV = estV * 2°dim;

end

sphereVolMCImpEXp.m

Does it work?

From mcImp.m we can see that this method works ok in 20 and 30
dimensions, where our original MC method fails

The relative error of the simple method scales as /7

To obtain a relative error of ¢, we need

,1— Ay

N=(y

=0(™)

For large d, remember that A, is going to zero faster than exponentially

The importance sampling method still has N = O(¢~2) but the
constant in front is much smaller.

(The limits of small ¢ and large d do not commute here...)

Conclusions (general)

We can build effective computational algorithms using random
numbers (with a bit of probability theory)

For these algorithms we must evaluate both systematic error (bias)
and random error (statistical uncertainty)

Computers usually work with pseudo-random numbers, you need to
think about the "seed"

... hext (final) lecture

general programming advice
... and some info on part IB computational projects

20

