3. Interlude: Dimensional Analysis

The essence of dimensional analysis is very simple: if you are asked how hot it is outside,
the answer is never “2 o’clock”. You’ve got to make sure that the units agree. Quantities
which come with units are said to have dimensions. In contrast, pure numbers such as
2 or 7 are said to be dimensionless.

In all the examples that we met in the previous section, the units are hiding within
the variables. Nonetheless, it’s worth our effort to dig them out. In most situations,
it is useful to identify three fundamental dimensions: length L, mass M and time T'.
The dimensions of all other quantities should be expressible in terms of these. We will
denote the dimension of a quantity Y as [Y]. Some basic examples include,

[Area] = L?
[Speed] = LT*
[Acceleration] = LT
[Force] = MLT?
[Energy] = M L*T

The first three should be obvious. You can quickly derive the last two by thinking of
your favourite equation and insisting that the dimensions on both sides are consistent.
For example, F' = ma immediately gives the dimensions [F], while F = %mv2 will give
you the dimensions [F]. This same technique can be used to determine the dimensions of
any constants that appear in equations. For example, Newton’s gravitational constant
appears in the formula F = —GMm/r?. Matching dimensions on both sides tells us
that

[G] = M~ LT

You shouldn’t be too dogmatic in insisting that there are exactly three dimensions of
length, mass and time. In some problems, it will be useful to introduce further dimen-
sions such as temperature or electric charge. For yet other problems, it could be useful
to distinguish between distances in the z-direction and distances in the z-direction. For
example, if you're a sailor, you would be foolish to think of vertical distances in the
same way as horizontal distances. Your life is very different if you mistakenly travel 10
fathoms (i.e. vertically) instead of 10 nautical miles (i.e. horizontally) and it’s useful
to introduce different units to reflect this.
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Conversely, when dealing with matters in fundamental physics, we often reduce the
number of dimensional quantities. As we will see in Section 7, in situations where special
relativity is important, time and space sit on the same footing and can be measured in
the same unit, with the speed of light providing a conversion factor between the two.
(We'll have more to say on this in Section 7.3.3). Similarly, in statistical mechanics,
Boltzmann’s constant provides a conversion factor between temperature and energy.

Scaling: Bridgman’s Theorem

Any equation that we derive must be dimensionally consistent. This simple observation
can be a surprisingly powerful tool. Firstly, it provides a way to quickly check whether
an answer has a hope of being correct. (And can be used to spot where a mistake
appeared in a calculation). Moreover, there are certain problems that can be answered
using dimensional analysis alone, allowing you to avoid calculations all together. Let’s
look at this in more detail.

We start by noting that dimensionful quantities such as length can only appear in
equations as powers, L for some a. We can never have more complicated functions.
One simple way to see this is to Taylor expand. For example, the exponential function
has the Taylor expansion

6x:1+x+w—2+...
2
The right-hand side contains all powers of x and only makes sense if x is a dimensionless
quantity: we can never have e’ appearing in an exponent otherwise we’d be adding a
length to an area to a volume and so on. A similar statement holds for sin z and log x,
for your favourite and least favourite functions. In all cases, the argument must be
dimensionless unless the function is simply of the form xz®. (If your favourite function
doesn’t have a Taylor expansion around x = 0, simply expand around a different point
to reach the same conclusion).

Suppose that we want to compute some quantity Y. This must have dimension
Y] = M*LPT”

for some «, 5 and «. (There is, in general, no need for these to be integers although
they are typically rational). We usually want to determine Y in terms of various
other quantities in the game — call them X;, with ¢ = 1,...n. These too will have
certain dimensions. We'll focus on just three of them, X;, X5 and X3. We'll assume
that these three quantities are “dimensionally independent”, meaning that by taking
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suitable combinations of X, Xs and X3, we can build quantities with dimension of
length, mass and time. Then we must be able to express Y as

Y =C X" X532 X5
for some aq, as and az such that
X0 (X532 [X5] = MoLPT

which is simply the requirement that the dimensions agree on both sides. All the
difficulty of the problem has been swept into determining C' which, by necessity, is
dimensionless. In principle, C' can depend on all the X;. However, since C' is dimen-
sionless, it can only depend on combinations of X; which are also dimensionless. And
this will often greatly restrict the form that the answer can take.

An Example: The Pendulum

The above discussion is a little abstract. Let’s throw some light on it with a simple
example. We will consider a pendulum. We already discussed the pendulum earlier in
(2.9). It has equation of motion

6 = —%Sin@

We’d like to know the period, T'. This plays the role of the quantity we called Y above:
clearly, it has dimension of time. (Although we’ve picked a slightly annoying choice of
notation because we have the equation [T] = T. Hopefully it won’t cause too much
confusion).

What are the variables X; that the period can depend upon? There are four of them:
the strength of gravity g, the mass of the pendulum m, the length of the pendulum
[ and the initial starting angle 6,. The dimension of m and [ are obviously mass and
length respectively; the dimension of acceleration is [g] = LT 2 while the initial angle
is necessarily dimensionless [y] = 0. (This follows from its periodicity, 6 = 6 + 2,
because 27 is dimensionless; alternatively it follows from the fact that it sits as the
argument of a sin function). The only dimensionless combination that we can form is
0y itself. We can therefore write

T = C(6y) g*m*1*
where, on dimensional grounds, we must have

(7] =T = [g] ] ] = M= Lovoor-
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. We learn immediately that

N =

The unique solution is as = 0 and a; = —az = —

T = C(6,) é (3.1)

This agrees with the result (2.10) that we got the hard way by solving the equation
of motion. Of course we haven’t solved the problem completely; by using dimensional
analysis there’s no way to figure out the function C'(y) which is given by the elliptic
integral in (2.10).

Nonetheless, there’s important information contained in the form (3.1). For example,
it tells us that the mass of the pendulum doesn’t affect the period. Moreover, suppose
you are given two pendulums, with lengths /; and /5. You release them from the same
starting angle and want to know how much faster the first pendulum swings compared
to the second. For these kinds of comparative questions, the unknown function C(6y)
drops out, and we can just immediately write down the result:

Tl_ ll
o, Vi

Whenever we are interested only in how things scale with some quantity, it is conven-
tional to use the symbol ~. (We could also use the proportional symbol o« but it looks
a little too much like the Greek letter «v). So equation (3.1) would be written as

l
T~ |-
g

In fact we already used this notation a number of times in the last Section.

The Importance of Dimensionless Quantities

The power of dimensional analysis really depends on how many dimensionless quantities
we can construct from the variables at hand. If we can construct r dimensionless
variables, then the unknown dimensionless quantity C' is a function of r variables. In
problems where » = 0 and there are no dimensionless combinations of variables, then
C is just a number.

It is a simple matter to count the number of dimensionless parameters in a given
problem. If we have n independent variables X; in a problem that requires k& indepen-
dent dimensions then we will be able to form » = n — k dimensionless combinations.
(In our discussion above, we had k = 3 corresponding to mass, length and time). This
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intuitive result goes by the grand name of the Buckingham 11 theorem. It can be proved
formally by setting up a system of linear equations and invoking the rank-nullity theo-
rem of linear algebra. Finally, the dimensionless combinations that you can make in a
given problem are not unique: if x and y are both dimensionless, then so are zy and %y
and x + y and, indeed, any function that you want to make out of these two variables.

There are other reasons to be interested in dimensionless quantities. The first is
practical: identifying dimensionless quantities at an early stage in a calculation will
save you ink! In a calculation that contains lots of variables, you’ll often find the
same dimensionless combinations of variables appearing at every stage. In particular
— as we've already seen — it is only dimensionless combinations that can appear as the
arguments of functions. Often, identifying these combinations at an early stage — and
perhaps even giving them a name of their own — will speed up the computation and
help in avoiding errors.

For example, if we look back to the problem of the 3d projectile with linear friction,
with equation of motion (2.29), we see that the dimensionless combination vt/m ap-
pears over and over in all steps of the calculation. In this case, it wasn’t too annoying to
keep writing v¢/m. But if you find yourself doing a calculation where the combination
e?m./2meoh?r appears three times on every line, then it’s a good idea to come up with
a new name for this object.

The second reason to be interested in dimensionless quantities is because the answer
to a calculation often simplifies in certain regimes. Perhaps this is the regime of long
times, or short distances, or high speeds, or some such thing. But only dimensionless
numbers can be big. For a dimensionless quantity x, we can write x > 1. But it makes
no sense to write Y > 1 if Y is not dimensionless: a dimensionful quantity must always
be big or small relative to something else.

We already discussed this issue in the case of the projectile (2.29), where we saw
that long times necessarily meant ty/m > 1. This is also the reason that we needed
to introduce a dimensionless quantity, the Reynolds number (2.25), to decide which
systems suffer linear friction vs quadratic friction.

Another Example: The Atomic Bomb

In the 1950s, the fluid dynamicist G.I. Taylor applied dimensional analysis to pho-
tographs of an atomic explosion. As you can see in the example below, these pho-
tographs happily came with both a time scale and distance scale, allowing you to trace
the radius of the shock front R(t) as a function of time after the explosion. To the
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annoyance of the US government, Taylor was able to use these time and distance scales
to get a good estimate of the energy released in the explosion. At the time this was
classified information.

For most explosions, the dynamics of the shock
front depends on the pressure of the outside air. Tay-
lor’s insight was to realise that in an explosion as pow-
erful as an atomic bomb, the air pressure is completely
negligible. However, the density of air, p, is important.
Taylor identified the following relevant variables

Air density [p] = ML™? e
Shock Front Radius [R] =L
Time from Explosion [t] =T

Figure 10:

There are no dimensionless quantities that we can build
from these. Since the energy released in the explosion has dimension [E] = M L*T 2,
on dimensional grounds we must have

where C' is an unknown constant. Of course, without knowing C' this would seem to
be useless. In Taylor’s case, a few further supplementary calculations allowed him to
estimate C.

In general, there’s a good rule of thumb if you want to figure out unknown constants
such as C: once you've figured out how many factors of 27 they contain, what’s left
is almost always a number that’s close to one. With a little bit of experience, it’s
usually possible to guess the factors of 27 as well since they usually arise for some
geometric reason. All of which means that dimensional analysis is, perhaps, even more
unreasonable useful than we might have originally hoped. Here, for example, is Einstein
himself weighing in on the issue:

“...for why should not a numerical factor like (127)3 appear in a mathematical-
physical deduction? But without doubt, such cases are rarities!

A Last Example: Rowing

Another, classic demonstration of the power of dimensional analysis is in understanding

how the speed of a rowing boat depends on the number of rowers?.

2This analysis was first by T. McMahon in the paper “Rowing: A similarity analysis”, Science
173:349 (1971)
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The boat experiences quadratic friction, proportional to the submerged cross-sectional
area A of the boat.

Fdrag ~ '1)214

(On dimensional grounds, we actually have F ~ pv?A, where p is the density of water,
but this will not be important for our story). The power needed to overcome the drag
is therefore

P = Faagv ~ v A

By Archimedes’ law, the displaced volume increases linearly with the number of rowers,
N. This means that the submerged volume V' ~ N so the submerged area scales as
A ~ N?/3 (We are assuming here that the mass of the boat is negligible compared to
the mass of the rowers). Meanwhile, if we further assume that the power supplied by
each rower is the same, we have P ~ N. Putting all this together, we have P ~ N ~
v3N?/3. Rearranging, we learn that the velocity increases with the number of rowers as

U~ N1/9
This simple result actually agrees pretty well with Olympic rowing times.

Dimensional Constants of Nature

The laws of physics provide us with three fundamental constants of Nature. We have
already met G = 6.7 x 10~ m3Kg~'s~2 which appears in both Newton’s law of gravity
as well as the more refined theory of gravity due to Einstein known as general relativity.
The other two fundamental constants are the speed of light, ¢ ~ 3 x 10® ms~!, which
characterises the relationship between space and time in special relativity, and Planck’s
constant A ~ 1073* Js which determines when quantum effects become important.

These constants have dimensions
Gl =M'L*T2% | [=LT" , |[b=ML7T

From these three constants, we can construct a characteristic length scale, known as

the Planck length [,
[|Gh _
lp = F ~ 10 35m

This is the distance at which gravity, quantum mechanics and the structure of space-
time all become important. All indications are that this is the shortest distance scale
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possible; at distances shorter than ,, space itself is likely to have no meaning. Simi-
larly, we can define the Planck time, ¢, = [, /¢, the Planck mass m, = \/hc/G and the
Planck energy,

h

E, = = ~ 10" GeV

lp
where 1 GeV =~ 107! J is a measure of energy used in particle physics. If we want
to explore aspects of quantum gravity in experiments on Earth, we will need to build
particle colliders capable of reaching Planck energies. This is a long way off: the LHC
operates at energies around 10* GeV'.
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